【題目】已知等差數(shù)列{an}中,a5=8,a10=23.
(1)令
,證明:數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{nbn}的前n項(xiàng)和Sn.
【答案】(1)見(jiàn)解析(2)Sn=(n﹣1)2n+1+2.
【解析】
(1)由題意可得an=3n-7,則
,即可得證;
(2)由nbn=n2n利用錯(cuò)位相減法即可求得Sn,即可得解.
(1)證明:設(shè)等差數(shù)列{an}的公差為d,∵a5=8,a10=23,
∴a1+4d=8,a1+9d=23,
聯(lián)立解得:a1=-4,d=3,
∴an=-4+3(n﹣1)=3n-7.
∴
,
∴
2.
∴數(shù)列{bn}是等比數(shù)列,首項(xiàng)為2,公比為2.
(2)nbn=n2n.
∴數(shù)列{nbn}的前n項(xiàng)和Sn=2+2×22+3×23+……+n2n.
∴2Sn=22+2×23+……+(n﹣1)2n+n2n+1.
∴兩式相減得﹣Sn=2+22+……+2n﹣n2n+1
n2n+1.
∴Sn=(n﹣1)2n+1+2.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年是中國(guó)改革開(kāi)放的第40周年,為了充分認(rèn)識(shí)新形勢(shì)下改革開(kāi)放的時(shí)代性,某地的民調(diào)機(jī)構(gòu)隨機(jī)選取了該地的100名市民進(jìn)行調(diào)查,將他們的年齡分成6段:
,并繪制了如圖所示的頻率分布直方圖.
![]()
(1)現(xiàn)從年齡在
內(nèi)的人員中按分層抽樣的方法抽取8人,再?gòu)倪@8人中隨機(jī)抽取3人進(jìn)行座談,用
表示年齡在
內(nèi)的人數(shù),求
的分布列和數(shù)學(xué)期望;
(2)若用樣本的頻率代替概率,用隨機(jī)抽樣的方法從該地抽取20名市民進(jìn)行調(diào)查,其中有
名市民的年齡在
的概率為
.當(dāng)
最大時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中
為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)
在區(qū)間
上是單調(diào)函數(shù),試求
的取值范圍;
(2)若函數(shù)
在區(qū)間
上恰有3個(gè)零點(diǎn),且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)討論
的單調(diào)性;
(2)若
有兩個(gè)極值點(diǎn)
,當(dāng)
時(shí),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線
的參數(shù)方程為
(
為參數(shù)),以平面直角坐標(biāo)系
的原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,橢圓
的極坐標(biāo)方程為
.
(1)求直線
的普通方程(寫成一般式)和橢圓
的直角坐標(biāo)方程(寫成標(biāo)準(zhǔn)方程);
(2)若直線
與橢圓
相交于
,
兩點(diǎn),且與
軸相交于點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐
的底面
是平行四邊形,側(cè)面
是邊長(zhǎng)為2的正三角形,
,
.
![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)設(shè)
是棱
上的點(diǎn),當(dāng)
平面
時(shí),求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,且滿足cosC+sinC
.
(1)求角B的大小;
(2)若a+c的最大值為10,求邊長(zhǎng)b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)記
,試判斷函數(shù)
的極值點(diǎn)的情況;
(Ⅱ)若
有且僅有兩個(gè)整數(shù)解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,個(gè)人收入的提高,自2019年1月1日起,個(gè)人所得稅起征點(diǎn)和稅率作了調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額.依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如表:
個(gè)人所得稅稅率表 | 個(gè)人所得稅稅率表 | ||||
免征額3500元 | 免征額5000元 | ||||
級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率 | 級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率 |
1 | 不超過(guò)1500元部分 | 3 | 1 | 不超過(guò)3000元部分 | 3 |
2 | 超過(guò)1500元至4500元的部分 | 10 | 2 | 超過(guò)3000元至12000元的部分 | 10 |
3 | 超過(guò)4500元至9000元的部分 | 20 | 3 | 超過(guò)12000元至25000元的部分 | 20 |
|
|
|
|
|
|
(1)假如小明某月的工資、薪金等稅前收入為7500元,請(qǐng)你幫小明算一下調(diào)整后小明的實(shí)際收入比調(diào)整前增加了多少?
(2)某稅務(wù)部門在小明所在公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
收入 |
|
|
|
|
|
|
人數(shù) | 40 | 30 | 10 | 8 | 7 | 5 |
先從收入在
及
的人群中按分層抽樣抽取7人,再?gòu)闹羞x3人作為新納稅法知識(shí)宣講員,用隨機(jī)變量X表示抽到作為宣講員的收入在
元的人數(shù),求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com