【題目】解答
(1)已知tanα=3,求
的值;
(2)已知α為第二象限角,化簡cosα
+sinα
.
【答案】
(1)解:∵tanα=3,
∴原式=
=
= ![]()
(2)解:∵α為第二象限角,∴sinα>0,cosα<0,
∴原式=cosα
+sinα
=﹣cosα
+sinα
=﹣1+sinα+1﹣cosα=sinα﹣cosα
【解析】(1)原式分子分母除以cosα,利用同角三角函數(shù)間的基本關(guān)系化簡,將tanα的值代入計(jì)算即可求出值;(2)原式被開方數(shù)利用二倍角的正弦、余弦函數(shù)公式,以及二次根式性質(zhì)化簡,整理即可得到結(jié)果.
【考點(diǎn)精析】本題主要考查了同角三角函數(shù)基本關(guān)系的運(yùn)用的相關(guān)知識(shí)點(diǎn),需要掌握同角三角函數(shù)的基本關(guān)系:![]()
;![]()
;(3) 倒數(shù)關(guān)系:
才能正確解答此題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐
中,底面
為平行四邊形,
,
,
,
點(diǎn)在底面
內(nèi)的射影
在線段
上,且
,
,
為
的中點(diǎn),
在線段
上,且
.
![]()
(Ⅰ)當(dāng)
時(shí),證明:平面
平面
;
(Ⅱ)當(dāng)平面
與平面
所成的二面角的正弦值為
時(shí),求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】咖啡館配制兩種飲料,甲種飲料分別用奶粉
、咖啡
、糖
。乙種飲料分別用奶粉
、咖啡
、糖
。已知每天使用原料限額為奶粉
、咖啡
、糖
。如果甲種飲料每杯能獲利
元,乙種飲料每杯能獲利
元。每天在原料的使用限額內(nèi)飲料能全部售出,每天應(yīng)配制兩種飲料各多少杯能獲利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個(gè)命題:①“若
,則
或
”是假命題;②從正方體的面對(duì)角線中任取兩條作為一對(duì),其中所成角為
的有48對(duì);③“
”是方程
表示焦點(diǎn)在
軸上的雙曲線的充分不必要條件;④點(diǎn)
是曲線
(
,
)上的動(dòng)點(diǎn),且滿足
,則
的取值范圍是
;⑤若隨機(jī)變量
服從正態(tài)分布
,且
,則
.其中正確命題的序號(hào)是__________(請把正確命題的序號(hào)填在橫線上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OQRP為矩形,其中P,Q分別是函數(shù)f(x)=
sinwx(A>0,w>0)圖象上的一個(gè)最高點(diǎn)和最低點(diǎn),O為坐標(biāo)原點(diǎn),R為圖象與x軸的交點(diǎn). ![]()
(1)求f(x)的解析式
(2)對(duì)于x∈[0,3],方程f2(x)﹣af(x)+1=0恒有四個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列四個(gè)正方體中,
為正方體的兩個(gè)頂點(diǎn),
為所在棱的中點(diǎn),則在這四個(gè)正方體中,直接
與平面
不平行的是( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某貨輪勻速行駛在相距
海里的甲、乙兩地間運(yùn)輸貨物,運(yùn)輸成本由燃料費(fèi)用和其他費(fèi)用組成.已知該貨輪每小時(shí)的燃料費(fèi)用與其航行速度的平方成正比(比例系數(shù)為
),其他費(fèi)用為每小時(shí)
元,且該貨輪的最大航行速度為
海里/小時(shí).
(1)請將從甲地到乙地的運(yùn)輸成本
(元)表示為航行速度
(海里/小時(shí))的函數(shù);
(2)要使從甲地到乙地的運(yùn)輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一個(gè)骰子先后拋擲兩次,事件
表示:“第一次出現(xiàn)奇數(shù)點(diǎn)”,事件
表示“第二次的點(diǎn)數(shù)不小于5”,則
__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:3x+2y﹣1=0和l2:5x+2y+1=0的交點(diǎn)為A
(1)若直線l3:(a2﹣1)x+ay﹣1=0與l1平行,求實(shí)數(shù)a的值;
(2)求經(jīng)過點(diǎn)A,且在兩坐標(biāo)軸上截距相等的直線l的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com