欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

9.設(shè)n∈N*,試比較3n和(n+1)!的大小.

分析 歸納猜想,利用數(shù)學(xué)歸納法即可證明.

解答 解:當(dāng)n=1時(shí),3>2!=1×2=2,n=2時(shí),9>3×2×1,n=3時(shí),27>4×3×2×1=24,
故當(dāng)n≤3時(shí),3n>(n+1)!,
假設(shè)n≥4時(shí),3n<(n+1)!,
①n=4時(shí),81<5×4×3×2×1=120,不等式成立,
②假設(shè)當(dāng)n=k,k≥4時(shí),結(jié)論成立,即3k<(k+1)!,
那么當(dāng)n=k+1時(shí),
則3×3k=3k+1<3•(k+1)!<(k+2)(k+1)!=(k+2)!=(k+1+1)!,
即n=k+1時(shí)結(jié)論成立,
由①②可得n≥4時(shí),3n<(n+1)!,n∈N*,
綜上所述:當(dāng)n≤3時(shí),3n>(n+1)!,當(dāng)n≥4時(shí),3n<(n+1)。

點(diǎn)評(píng) 本題考查了數(shù)學(xué)歸納法證明不等式成立的問題,以及分類討論的思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)y=lg(1-2cos2x)
①求函數(shù)的最小正周期.
②定義域和值域.
③判斷函數(shù)的奇偶性.
④求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,a、b、c分別為A、B、C的對(duì)邊,a=$\sqrt{6}$,b=4,cosAsin(A+B)-sin2A=0.
(1)求c的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=-2cos($\frac{x}{2}$+$\frac{π}{3}$)在區(qū)間($\frac{28}{5}$π,a]上是單調(diào)函數(shù),則實(shí)數(shù)a的最大值為(  )
A.$\frac{17π}{3}$B.C.$\frac{20π}{3}$D.$\frac{22π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知($\frac{5}{3}$,0)是函數(shù)f(x)=$\sqrt{3}$sin(ωx+$\frac{π}{6}$)(0<ω<2)的一個(gè)對(duì)稱中心.
(1)求f(x)的解析式;
(2)求f(x)的增區(qū)間及對(duì)稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A為橢圓$\frac{{x}^{2}}{9}$+$\frac{2{y}^{2}}{9}$=1的右頂點(diǎn),點(diǎn)D(1,0),點(diǎn)P,B在橢圓上,且在x軸上方,$\overrightarrow{BP}$=$\overrightarrow{DA}$.
(1)求直線BD的方程;
(2)已知拋物線C:x2=2py(p>0)過點(diǎn)P,點(diǎn)Q是拋物線C上的動(dòng)點(diǎn),設(shè)點(diǎn)Q到點(diǎn)A的距離為d1,點(diǎn)Q到拋物線C的準(zhǔn)線的距離為d2,求d1+d2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求下列曲線的標(biāo)準(zhǔn)方程:
(1)與橢圓x2+4y2=16有相同焦點(diǎn),過點(diǎn)p($\sqrt{5}$,$\sqrt{6}$),求此橢圓標(biāo)準(zhǔn)方程;
(2)求以原點(diǎn)為頂點(diǎn),以坐標(biāo)軸為對(duì)稱軸,且焦點(diǎn)在直線3x-4y-12=0的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.P為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上異于左右頂點(diǎn)A1,A2的任意一點(diǎn),則直線PA1與PA2的斜率之積為定值-$\frac{^{2}}{{a}^{2}}$,將這個(gè)結(jié)論類比到雙曲線,得出的結(jié)論為:P為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上異于左右頂點(diǎn)A1,A2的任意一點(diǎn),則( 。
A.直線PA1與PA2的斜率之和為定值$\frac{{a}^{2}}{^{2}}$
B.直線PA1與PA2的斜率之積為定值$\frac{{a}^{2}}{^{2}}$
C.直線PA1與PA2的斜率之和為定值$\frac{^{2}}{{a}^{2}}$
D.直線PA1與PA2的斜率之積為定值$\frac{^{2}}{{a}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,F(xiàn)是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn),O是坐標(biāo)原點(diǎn),|OF|=$\sqrt{5}$,過F作OF的垂線交橢圓于P0,Q0兩點(diǎn),△OP0Q0的面積為$\frac{4\sqrt{5}}{3}$.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)M(-$\sqrt{5}$,0)的直線l與上、下半橢圓分別交于點(diǎn)P,Q,且|PM|=2|MQ|,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案