【題目】為了促進(jìn)學(xué)生的全面發(fā)展,鄭州市某中學(xué)重視學(xué)生社團(tuán)文化建設(shè),現(xiàn)用分層抽樣的方法從“話劇社”,“創(chuàng)客社”、“演講社”三個(gè)金牌社團(tuán)中抽6人組成社團(tuán)管理小組,有關(guān)數(shù)據(jù)見下表(單位:人):
社團(tuán)名稱 | 成員人數(shù) | 抽取人數(shù) |
話劇社 | 50 | a |
創(chuàng)客社 | 150 | b |
演講社 | 100 | c |
(1)求
的值;
(2)若從“話劇社”,“創(chuàng)客社”,“演講社”已抽取的6人中任意抽取2人擔(dān)任管理小組組長(zhǎng),求這2人來(lái)自不同社團(tuán)的概率.
【答案】(I)
;(Ⅱ)![]()
【解析】試題分析:
(1)利用分層抽樣的概率可得
的值為
;
(2)列出所有可能的事件,利用古典概型公式可得這2人來(lái)自不同社團(tuán)的概率為
.
試題解析:
(I) ![]()
![]()
![]()
所以從“話劇社”,“創(chuàng)客社”,“演講社”三個(gè)社團(tuán)中抽取的人數(shù)分別是![]()
(Ⅱ)設(shè)從“話劇社”,“創(chuàng)客社”,“演講社”抽取的6人分別為: ![]()
則從6人中抽取2人構(gòu)成的基本事件為:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
共15個(gè)
記事件
為“抽取的2人來(lái)自不同社團(tuán)”.則事件
包含的基本事件有:
,
,
,
,
,
,
,
,
,
,
共11個(gè)
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線
(
,
)在
處的切線與直線
平行.
(1)討論
的單調(diào)性;
(2)若
在
,
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
、
滿足:
.
(1)求
;
(2)設(shè)
,求數(shù)列
的通項(xiàng)公式;
(3)設(shè)
,不等式
恒成立時(shí),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我校名教師參加我縣“六城”同創(chuàng)“干部職工進(jìn)網(wǎng)絡(luò),服務(wù)群眾進(jìn)社區(qū)”活動(dòng),他們的年齡均在25歲至50歲之間,按年齡分組:第一組
,第二組
,第三組
,第四組
,第五組
,得到的頻率分布直方圖如圖所示:
![]()
上表是年齡的頻數(shù)分布表.
(1)求正整數(shù)
的值;
(2)根據(jù)頻率分布直方圖估計(jì)我校這
名教師年齡的中位數(shù)和平均數(shù);
(3)從第一、二組用分層抽樣的方法抽取4人,現(xiàn)在從這4人中任取兩人接受咸豐電視臺(tái)的采訪,求從這4人中選取的兩人年齡均在第二組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有一條光線從
射出,并且經(jīng)
軸上一點(diǎn)
反射.
(1)求入射光線和反射光線所在的直線方程(分別記為
);
(2)設(shè)動(dòng)直線
,當(dāng)點(diǎn)
到
的距離最大時(shí),求
所圍成的三角形的內(nèi)切圓(即:圓心在三角形內(nèi),并且與三角形的三邊相切的圓)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的最小值;
(2)設(shè)
,討論函數(shù)
的單調(diào)性;
(3)若斜率為
的直線與曲線
交于
,
兩點(diǎn),其中
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,由三棱柱
和四棱錐
構(gòu)成的幾何體中,
平面
,
,
,
,平面
平面
.
![]()
(Ⅰ)求證:
;
(Ⅱ)若
為棱
的中點(diǎn),求證:
平面
;
(Ⅲ)在線段
上是否存在點(diǎn)
,使直線
與平面
所成的角為
?若存在,求
的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
(1)若曲線
在點(diǎn)
處的切線為
,求
的值;
(2)討論函數(shù)
的單調(diào)性;
(3)設(shè)函數(shù)
,若至少存在一個(gè)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com