已知函數(shù)
,在
時取得極值.
(Ⅰ)求函數(shù)
的解析式;
(Ⅱ)若
時,
恒成立,求實數(shù)m的取值范圍;
(Ⅲ)若
,是否存在實數(shù)b,使得方程
在區(qū)間
上恰有兩個相異實數(shù)根,若存在,求出b的范圍,若不存在說明理由.
(Ⅰ)
,(Ⅱ)
;(Ⅲ)
解析試題分析:(Ⅰ)
…….2分
依題意得
,所以
,從而
….4分
(Ⅱ)
令
,得
或
(舍去),
當(dāng)
時,
當(dāng)![]()
由討論知
在
的極小值為
;最大值為
或
,因為
,所以最大值為
,所以
8分
(Ⅲ)設(shè)
,即
,
.
又
,令
,得
;令
,得
.
所以函數(shù)
的增區(qū)間
,減區(qū)間
.zxxk
要使方程有兩個相異實根,則有
,解得
12分
考點:本題考查了導(dǎo)數(shù)的運用
點評:導(dǎo)數(shù)本身是個解決問題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合函數(shù)甚至是實際問題考查導(dǎo)數(shù)的應(yīng)用,求單調(diào)、最值、完成證明等,請注意歸納常規(guī)方法和常見注意點.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)若曲線
在
和
處的切線互相平行,求
的值;
(Ⅱ)求
的單調(diào)區(qū)間;
(Ⅲ)設(shè)
,若對任意
,均存在
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
。
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若
與
的圖象恰有兩個交點,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
(其中
實數(shù),
是自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)
時,求函數(shù)
在點
處的切線方程;
(Ⅱ)求
在區(qū)間
上的最小值;
(Ⅲ) 若存在
,使方程
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)設(shè)
,對任意的
,總存在
,使得不等式
成立,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)![]()
(1)求函數(shù)
的最小正周期;
(2)設(shè)函數(shù)
對任意
,有
,且當(dāng)
時,
;求函數(shù)
在
上的解析式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分14分) 定義在
上的函數(shù)
同時滿足以下條件:
①
在
上是減函數(shù),在
上是增函數(shù);②
是偶函數(shù);
③
在
處的切線與直線
垂直.
(1)求函數(shù)
的解析式;
(2)設(shè)
,求函數(shù)
在
上的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com