【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間及極值;
(2)設(shè)
時(shí),存在
,使方程
成立,求實(shí)數(shù)
的最小值.
【答案】(1)單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
.函數(shù)
有極大值且為
,
沒(méi)有極小值.(2)![]()
【解析】
(1)通過(guò)求導(dǎo),得到導(dǎo)函數(shù)零點(diǎn)為
,從而可根據(jù)導(dǎo)函數(shù)正負(fù)得到單調(diào)區(qū)間,并可得到極大值為
,無(wú)極小值;(2)由
最大值為
且
可將問(wèn)題轉(zhuǎn)化為
有解;通過(guò)假設(shè)
,求出
的最小值,即為
的最小值.
(1)由
得:![]()
令
,則
,解得![]()
當(dāng)
時(shí),![]()
當(dāng)
時(shí),![]()
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為![]()
當(dāng)
時(shí),函數(shù)
有極大值
,
沒(méi)有極小值
(2)當(dāng)
時(shí),由(1)知,函數(shù)
在
處有最大值![]()
又因?yàn)?/span>![]()
方程
有解,必然存在
,使![]()
,![]()
等價(jià)于方程
有解,即
在
上有解
記
,![]()
,令
,得![]()
當(dāng)
時(shí),
,
單調(diào)遞減
當(dāng)
時(shí),
,
單調(diào)遞增
所以當(dāng)
時(shí),![]()
所以實(shí)數(shù)
的最小值為![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為提升教師專業(yè)功底,引領(lǐng)青年教師成長(zhǎng),某市教育局舉行了全市“園丁杯”課堂教學(xué)比賽,在這次比賽中,通過(guò)采用錄像課評(píng)比的片區(qū)預(yù)賽,有
共10位選手脫穎而出進(jìn)入全市決賽.決賽采用現(xiàn)場(chǎng)上課形式,從學(xué)科評(píng)委庫(kù)中采用隨機(jī)抽樣抽選代號(hào)1,2,3,…,7的7名評(píng)委,規(guī)則是:選手上完課,評(píng)委們當(dāng)初評(píng)分,并從7位評(píng)委評(píng)分中去掉一個(gè)最高分,去掉一個(gè)最低分,根據(jù)剩余5位評(píng)委的評(píng)分,算出平均分作為該選手的最終得分.記評(píng)委
對(duì)某選手評(píng)分排名與該選手最終排名的差的絕對(duì)值為“評(píng)委
對(duì)這位選手的分?jǐn)?shù)排名偏差”
.排名規(guī)則:由高到低依次排名,如果選手分?jǐn)?shù)一樣,認(rèn)定名次并列(如:選手
分?jǐn)?shù)一致排在第二,則認(rèn)為他們同屬第二名,沒(méi)有第三名,接下來(lái)分?jǐn)?shù)為第四名).七位評(píng)委評(píng)分情況如下表所示:
![]()
(1)根據(jù)最終評(píng)分表,填充如下表格:
![]()
(2)試借助評(píng)委評(píng)分分析表,根據(jù)評(píng)委對(duì)各選手的排名偏差的平方和,判斷評(píng)委4與評(píng)委5在這次活動(dòng)中誰(shuí)評(píng)判更準(zhǔn)確.
____號(hào)評(píng)委評(píng)分分析表
選手 | A | B | C | D | E | F | G | H | I | J |
最終排名 | ||||||||||
評(píng)分排名 | ||||||||||
排名偏差 |
(3)從這10位選手中任意選出3位,記其中評(píng)委4比評(píng)委5對(duì)選手排名偏差小的選手?jǐn)?shù)位
,求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)觀測(cè),某公路段在某時(shí)段內(nèi)的車流量
(千輛/小時(shí))與汽車的平均速度
(千米/小時(shí))之間有函數(shù)關(guān)系:
.
(1)在該時(shí)段內(nèi),當(dāng)汽車的平均速度
為多少時(shí)車流量
最大?最大車流量為多少?(精確到0.01)
(2)為保證在該時(shí)段內(nèi)車流量至少為10千輛/小時(shí),則汽車的平均速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在區(qū)間
上的函數(shù)
的圖象如圖所示,記為
,
,
為頂點(diǎn)的三角形的面積為
,則函數(shù)
的導(dǎo)數(shù)
的圖象大致是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐
中,
和
是邊長(zhǎng)為
的等邊三角形,
,
分別是
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求證:
平面
;
(3)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求證:函數(shù)
有唯一零點(diǎn);
(2)若對(duì)任意
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),曲線
的參數(shù)方程為
(
為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)分別求曲線
的極坐標(biāo)方程和曲線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線
交曲線
于
,
兩點(diǎn),交曲線
于
,
兩點(diǎn),求
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱臺(tái)
的上下底面分別是邊長(zhǎng)為2和4的正方形,
= 4且
⊥底面
,點(diǎn)
為
的中點(diǎn).
![]()
(Ⅰ)求證:
面
;
(Ⅱ)在
邊上找一點(diǎn)
,使
∥面
,
并求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲盒子中有
個(gè)紅球,
個(gè)藍(lán)球,乙盒子中有
個(gè)紅球,
個(gè)藍(lán)球
,同時(shí)從甲乙兩個(gè)盒子中取出
個(gè)球進(jìn)行交換,(a)交換后,從甲盒子中取1個(gè)球是紅球的概率記為
.(b)交換后,乙盒子中含有紅球的個(gè)數(shù)記為
.則( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com