已知等差數(shù)列
滿足:
=2,且
成等比數(shù)列.
(1)求數(shù)列
的通項(xiàng)公式.
(2)記
為數(shù)列
的前n項(xiàng)和,是否存在正整數(shù)n,使得
若存在,求n的最小值;若不存在,說(shuō)明理由.
(1)
或
;(2)當(dāng)
時(shí),不存在滿足題意的n;當(dāng)
時(shí),存在滿足題意的n,其最小值為41.
解析試題分析:(1)本小題利用基本量法,設(shè)公差為
,則
成等比可轉(zhuǎn)化為關(guān)于
的方程,解出
即可寫(xiě)其通項(xiàng)公式;(2)在上小題已得的等差數(shù)列的前提下,求出其前n項(xiàng)和,利用
轉(zhuǎn)化為不等解集問(wèn)題的分析即可,同時(shí)要注意n為正整數(shù).
試題解析:(1)設(shè)數(shù)列
的公差為
,依題意,
,
,
成等比數(shù)列,故有
,
化簡(jiǎn)得
,解得
或![]()
.當(dāng)
時(shí),
;當(dāng)![]()
時(shí),
,
從而得數(shù)列
的通項(xiàng)公式為
或
.
(2)當(dāng)
時(shí),
.顯然
,此時(shí)不存在正整數(shù)n,使得
成立.
當(dāng)
時(shí),
.令
,即
,解得
或
(舍去),此時(shí)存在正整數(shù)n,使得
成立,n的最小值為41.
綜上,當(dāng)
時(shí),不存在滿足題意的n;當(dāng)
時(shí),存在滿足題意的n,其最小值為41.
考點(diǎn):等差與等比數(shù)列的定義,通項(xiàng)公式,等差數(shù)列的前n項(xiàng)和公式,解一元二次不等式,分類(lèi)討論與化歸思想.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列{an}滿足a3=5,a5﹣2a2=3,又等比數(shù)列{bn}中,b1=3且公比q=3.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列
滿足
,令
.
(1)試判斷數(shù)列
是否為等差數(shù)列?并說(shuō)明理由;
(2)若
,求
前
項(xiàng)的和
;
(3)是否存在
使得
三數(shù)成等比數(shù)列?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列
滿足:
=2,且
成等比數(shù)列.
(1)求數(shù)列
的通項(xiàng)公式.
(2)記
為數(shù)列
的前n項(xiàng)和,是否存在正整數(shù)n,使得
若存在,求n的最小值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)各項(xiàng)均為正數(shù)的數(shù)列
的前
項(xiàng)和為
,滿足
且
構(gòu)成等比數(shù)列.(1) 證明:
;(2) 求數(shù)列
的通項(xiàng)公式;(3) 證明:對(duì)一切正整數(shù)
,有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在等比數(shù)列
( n∈N*)中a1>1,公比q>0,設(shè)bn=log2an,且b1+b3+b5=6,b1·b3·b5=0.
(1)求證:數(shù)列
是等差數(shù)列;
(2)求
前n項(xiàng)和Sn及
通項(xiàng)an.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列
的前
項(xiàng)和為
,
,
,
(1)求數(shù)列
的通項(xiàng)公式;
(2)若
,求數(shù)列
的前100項(xiàng)和.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com