【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
平面直角坐標(biāo)系
中,射線
:
,曲線
的參數(shù)方程為
(
為參數(shù)),曲線
的方程為
;以原點為極點,
軸的非負(fù)半軸為極軸建立極坐標(biāo)系.曲線
的極坐標(biāo)方程為
.
(Ⅰ)寫出射線
的極坐標(biāo)方程以及曲線
的普通方程;
(Ⅱ)已知射線
與
交于
,
,與
交于
,
,求
的值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:
的焦點坐標(biāo)為
,點
,過點P作直線l交拋物線C于A,B兩點,過A,B分別作拋物線C的切線,兩切線交于點Q,且兩切線分別交x軸于M,N兩點,則
面積的最小值為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
,點
,
是圓
上任意一點,線段
的垂直平分線交
于點
,當(dāng)點
在圓上運(yùn)動時,點
的軌跡為曲線
.
1
求曲線
的方程;
2
若直線
與曲線
相交于
兩點,
為坐標(biāo)原點,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓和雙曲線有共同焦點
,
是它們的一個交點,且
,記橢圓和雙曲線的離心率分別為
,則
的最大值為( )
A. 3B. 2C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),直線
與直線
平行,且過坐標(biāo)原點,圓
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點為極點,
軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線
和圓
的極坐標(biāo)方程;
(2)設(shè)直線
和圓
相交于點
、
兩點,求
的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)若函數(shù)
有兩個極值點
,且
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】太極圖被稱為“中華第一圖”,閃爍著中華文明進(jìn)程的光輝,它是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對統(tǒng)一的和諧美.定義:能夠?qū)AO的周長和面積同時等分成兩個部分的函數(shù)稱為圓O的一個“太極函數(shù)”,設(shè)圓O:
,則下列說法中正確的是( )
![]()
A.函數(shù)
是圓O的一個太極函數(shù)
B.圓O的所有非常數(shù)函數(shù)的太極函數(shù)都不能為偶函數(shù)
C.函數(shù)
是圓O的一個太極函數(shù)
D.函數(shù)
的圖象關(guān)于原點對稱是
為圓O的太極函數(shù)的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的方程為
,離心率
,且短軸長為4.
求橢圓
的方程;
已知
,
,若直線l與圓
相切,且交橢圓E于C、D兩點,記
的面積為
,記
的面積為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)點
,定義
,其中
為坐標(biāo)原點,對于下列結(jié)論:
符合
的點
的軌跡圍成的圖形面積為8;
設(shè)點
是直線:
上任意一點,則
;
設(shè)點
是直線:
上任意一點,則使得“
最小的點有無數(shù)個”的充要條件是
;
設(shè)點
是橢圓
上任意一點,則
.
其中正確的結(jié)論序號為
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com