【題目】已知函數(shù)
,若函數(shù)
的圖象與
軸的交點(diǎn)個(gè)數(shù)不少于2個(gè),則實(shí)數(shù)
的取值范圍為( )
A.
B. ![]()
C.
D. ![]()
【答案】A
【解析】由題可知函數(shù)
的圖象與
軸的交點(diǎn)個(gè)數(shù)不少于2個(gè),即為函數(shù)y=f(x)的圖像與函數(shù)y=mx+m的圖像的交點(diǎn)個(gè)數(shù)不少于2個(gè),由于函數(shù)y=mx+m的圖像過(guò)定點(diǎn)P(-1,0),且斜率為m,作出函數(shù)y=f(x)的圖像如圖所示,
![]()
數(shù)形結(jié)合可知,當(dāng)動(dòng)直線過(guò)點(diǎn)A時(shí)有2個(gè)交點(diǎn),當(dāng)動(dòng)直線為
的切線時(shí),即過(guò)點(diǎn)B時(shí)有兩個(gè)交點(diǎn),在這兩種極限位置之間有3個(gè)交點(diǎn),易知
設(shè)直線y=mx+m與函數(shù)
的圖像相切,聯(lián)立方程組
由題可知
又x>1.所以![]()
過(guò)點(diǎn)(-1,0)作
的切線,設(shè)切點(diǎn)坐標(biāo)為
,則
此時(shí),切線的斜率為![]()
故實(shí)數(shù)m的取值范圍為
.綜上實(shí)數(shù)m的取值范圍為
.
故選A.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù),
為直線的傾斜角,且
),以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)若直線
經(jīng)過(guò)圓
的圓心,求直線
的傾斜角;
(2)若直線
與圓
交于
,
兩點(diǎn),且
,點(diǎn)
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題甲成立,可推出命題乙不成立,則下列說(shuō)法中,一定正確的是( )
A.命題甲不成立,可推出命題乙成立B.命題甲不成立,可推出命題乙不成立
C.命題乙成立,可推出命題甲成立D.命題乙成立,可推出命題甲不成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄AC過(guò)定點(diǎn)F(2,0),且與直線x=-2相切,圓心C的軌跡為E,
(1)求圓心C的軌跡E的方程;
(2)若直線l交E與P,Q兩點(diǎn),且線段PQ的中心點(diǎn)坐標(biāo)(1,1),求|PQ|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列是關(guān)于復(fù)數(shù)的類(lèi)比推理:
①?gòu)?fù)數(shù)的加減法運(yùn)算可以類(lèi)比多項(xiàng)式的加減法運(yùn)算法則;
②由實(shí)數(shù)絕對(duì)值的性質(zhì)|x|2=x2類(lèi)比得到復(fù)數(shù)z的性質(zhì)|z|2=z2;
③已知a,b∈R,若a-b>0,則a>b類(lèi)比得已知z1,z2∈C,若z1-z2>0,則z1>z2;
④由向量加法的幾何意義可以類(lèi)比得到復(fù)數(shù)加法的幾何意義.
其中推理結(jié)論正確的是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)
具備以下兩個(gè)條件:(1)至少有一條對(duì)稱(chēng)軸或一個(gè)對(duì)稱(chēng)中心;(2)至少有兩個(gè)零點(diǎn),則稱(chēng)這樣的函數(shù)為“多元素”函數(shù),下列函數(shù)中為“多元素”函數(shù)的是_______.
①
;②
;③
;④
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列判斷正確的是( )
A. 設(shè)
是實(shí)數(shù),則“
”是“
”的充分而不必要條件
B.
:“
,
”則有
:不存在
,![]()
C. 命題“若
,則
”的否命題為:“若
,則
”
D. “
,
”為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)隨機(jī)選取了
名男生,將他們的身高作為樣本進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.觀察圖中數(shù)據(jù),完成下列問(wèn)題.
(Ⅰ)求
的值及樣本中男生身高在
(單位:
)的人數(shù);
(Ⅱ)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,通過(guò)樣本估計(jì)該校全體男生的平均身高;
(Ⅲ)在樣本中,從身高在
和
(單位:
)內(nèi)的男生中任選兩人,求這兩人的身高都不低于
的概率.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com