已知
是橢圓
的右焦點(diǎn),圓
與
軸交于
兩點(diǎn),
是橢圓
與圓
的一個交點(diǎn),且
.
(Ⅰ)求橢圓
的離心率;
(Ⅱ)過點(diǎn)
與圓
相切的直線
與
的另一交點(diǎn)為
,且
的面積等于
,求橢圓
的方程.
①.
②.
.
解析試題分析:(Ⅰ)利用圓及橢圓方程求出點(diǎn)
的坐標(biāo), 利用圓的幾何性質(zhì)及條件
,計算出
,再利用勾股定理建立
之間的方程,求出離心率. (Ⅱ)由(Ⅰ)問中的離心率值化簡橢圓方程,利用圓的切線性質(zhì)確定直線
的斜率,寫出直線方程,再與橢圓方程聯(lián)立,求出
的底邊長
及高,建立面積等式求出
.
試題解析:(Ⅰ)由題意,
,
,
,
∵
,![]()
得
,
由
,
得
,
即橢圓
的離心率
(4分)![]()
(Ⅱ)
的離心率
,令
,
,則![]()
直線![]()
,設(shè)![]()
由
得
,![]()
又點(diǎn)
到直線
的距離
,
的面積![]()
,
解得![]()
故橢圓
………(12分)
考點(diǎn):1.橢圓的定義;2.離心率;3.圓的幾何性質(zhì);4.直線與橢圓位置關(guān)系.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系
中,已知
,
,
,直線
與線段
、
分別交于點(diǎn)
、
.![]()
(1)當(dāng)
時,求以
為焦點(diǎn),且過
中點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)
作直線
交
于點(diǎn)
,記
的外接圓為圓
.
①求證:圓心
在定直線
上;
②圓
是否恒過異于點(diǎn)
的一個定點(diǎn)?若過,求出該點(diǎn)的坐標(biāo);若不過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
、
分別是橢圓
:
的左、右焦點(diǎn),點(diǎn)
在直線
上,線段
的垂直平分線經(jīng)過點(diǎn)
.直線
與橢圓
交于不同的兩點(diǎn)
、
,且橢圓
上存在點(diǎn)
,使
,其中
是坐標(biāo)原點(diǎn),
是實(shí)數(shù).
(Ⅰ)求
的取值范圍;
(Ⅱ)當(dāng)
取何值時,
的面積最大?最大面積等于多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,且經(jīng)過點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)如果過點(diǎn)
的直線與橢圓交于
兩點(diǎn)(
點(diǎn)與
點(diǎn)不重合),
①求
的值;
②當(dāng)
為等腰直角三角形時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓C:
的左、右焦點(diǎn)分別為
,離心率為
,點(diǎn)A是橢圓上任一點(diǎn),
的周長為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)
任作一動直線l交橢圓C于
兩點(diǎn),記
,若在線段
上取一點(diǎn)R,使得
,則當(dāng)直線l轉(zhuǎn)動時,點(diǎn)R在某一定直線上運(yùn)動,求該定直線的方程.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,點(diǎn)
為動點(diǎn),
分別為橢圓
的左右焦點(diǎn).已知△
為等腰三角形.(1)求橢圓的離心率
;(2)設(shè)直線
與橢圓相交于
兩點(diǎn),
是直線
上的點(diǎn),滿足
,求點(diǎn)
的軌跡方程.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△
的兩個頂點(diǎn)
的坐標(biāo)分別是
,且
所在直線的斜率之積等于
.
(Ⅰ)求頂點(diǎn)
的軌跡
的方程,并判斷軌跡
為何種圓錐曲線;
(Ⅱ)當(dāng)
時,過點(diǎn)
的直線
交曲線
于
兩點(diǎn),設(shè)點(diǎn)
關(guān)于
軸的對稱
點(diǎn)為
(
不重合) 試問:直線
與
軸的交點(diǎn)是否是定點(diǎn)?若是,求出定點(diǎn),若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,
為半圓,
為半圓直徑,
為半圓圓心,且
,
為線段
的中點(diǎn),已知
,曲線
過
點(diǎn),動點(diǎn)
在曲線
上運(yùn)動且保持
的值不變.
(I)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線
的方程;
(II)過點(diǎn)
的直線
與曲線
交于
兩點(diǎn),與
所在直線交于
點(diǎn),
,
證明:
為定值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知動圓過定點(diǎn)A(4,0), 且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動圓圓心的軌跡C的方程;
(Ⅱ) 已知點(diǎn)B(-1,0), 設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點(diǎn)P, Q, 若x軸是
的角平分線, 證明直線l過定點(diǎn).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com