【題目】給出下列四個(gè)命題
①四面體
中,
,
,則![]()
②已知雙曲線
的兩條漸近線的夾角為
,則雙曲線的離心率為2
③若正數(shù)
和
滿足
,則![]()
④向量
,若存在實(shí)數(shù)
,使得
,則![]()
其中真命題的序號是______(寫出所有真命題的序號).
【答案】①③
【解析】
①利用線面垂直的判定和性質(zhì)得出結(jié)論;
②求出雙曲線漸近線的傾斜角,利用
求解離心率;
③直接利用基本不等式判斷;
④利用向量的線性運(yùn)算表示,再進(jìn)行判斷;
①設(shè)
中點(diǎn)為
,在
中,
,所以
;
同理,在
中,
,
,所以
平面
,
又
平面
,所以
,故正確;
②由題意,兩條漸近線的夾角為
,則漸近線的傾斜角為
或
,
當(dāng)傾斜角為
時(shí),
,解得
,
,
,
當(dāng)傾斜角為
時(shí),
,解得
,
,
,
故錯(cuò)誤;
③由題意,
,
當(dāng)且僅當(dāng)
,即
時(shí)等號成立,故正確;
④由題意,
,
,
所以
,故錯(cuò)誤.
故答案為:①③
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線
的參數(shù)方程為
(t為參數(shù))。以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求
的普通方程和
的直角坐標(biāo)方程;
(2)若
,
交于A,B兩點(diǎn),P點(diǎn)極坐標(biāo)為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
(
)的一個(gè)焦點(diǎn)
與拋物線
:
的焦點(diǎn)重合,且離心率為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)過焦點(diǎn)
的直線
與拋物線
交于
,
兩點(diǎn),與橢圓
交于
,
兩點(diǎn),滿足
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos(
),把函數(shù)f(x)的圖象向左平移
個(gè)單位得函數(shù)g(x)的圖象,則下面結(jié)論正確的是( )
A.函數(shù)g(x)是偶函數(shù)
B.函數(shù)g(x)的最小正周期是4π
C.函數(shù)g(x)在區(qū)間[π,3π]上是增區(qū)數(shù)
D.函數(shù)g(x)的圖象關(guān)于直線x=π對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線
(a>0,b>0)的右焦點(diǎn)為F(3,0),左、右頂點(diǎn)分別為M,N,點(diǎn)P是E在第一象限上的任意一點(diǎn),且滿足kPMkPN=8.
(1)求雙曲線E的方程;
(2)若直線PN與雙曲線E的漸近線在第四象限的交點(diǎn)為A,且△PAF的面積不小于3
,求直線PN的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,
,其中
為實(shí)數(shù).
(1)若
在
上是單調(diào)減函數(shù),且
在
上有最小值,求
的取值范圍;
(2)若
在
上是單調(diào)增函數(shù),試求
的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A.命題p:
,則¬p:x∈R,x2+x+1<0
B.在△ABC中,“A<B”是“sinA<sinB”的既不充分也不必要條件
C.若命題p∧q為假命題,則p,q都是假命題
D.命題“若x2﹣3x+2=0,則x=1”的逆否命題為“x≠1,則x2﹣3x+2≠0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
1
當(dāng)
時(shí),求不等式
的解集;
2
若關(guān)于x的不等式
有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(a是常數(shù)且a>0).對于下列命題:
①函數(shù)f(x)的最小值是-1;
②函數(shù)f(x)在R上是單調(diào)函數(shù);
③若f(x)>0在
上恒成立,則a的取值范圍是a>1;
④對任意的x1<0,x2<0且x1≠x2,恒有
.
其中正確命題的序號是____________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com