欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情

【題目】隨著科技的發(fā)展,網購已逐漸融入了人們的生活.網購是非常方便的購物方式,為了了解網購在某市的普及情況,某調查機構進行了有關網購的調查,并從參與調查的市民中隨機抽取了男、女各100人進行分析,得到如下所示的統(tǒng)計表.

經常網購

偶爾網購或不網購

合計

男性

50

100

女性

70

100

合計

:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

1)完成上表,并根據以上數據判斷能否在犯錯誤的概率不超過0.01的前提下認為該市市民的網購情況與性別無關.

2)①現從所抽取的100位女性市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經常網購的概率;

②將頻率視為概率,從該市所有參與調查的市民中隨機抽取10人贈送禮品,記其中經常網購的人數為X,求隨機變量X的數學期望和方差.

【答案】1)見解析,能(2)①②數學期望6,方差2.4.

【解析】

1)完善列聯表,計算,得到答案.

2)計算得到,根據題意知,計算數學期望和方差得到答案.

1)完成列聯表如下圖所示.

經常網購

偶爾網購或不網購

合計

男性

50

50

100

女性

70

30

100

合計

120

80

200

由列聯表,得,

∴能在犯錯誤的概率不超過0.01的前提下認為該市市民的網購情況與性別有關.

2)①由題意知所抽取的10位女性市民中,經常網購的有()

偶爾網購或不網購的有(),

∴選取的3人中至少有2人經常網購的概率.

②由列聯表可知,抽到經常網購的市民的頻率為,將頻率視為概率,

∴從該市所有參與調查的市民中任意抽取一人,抽到經常網購的市民的概率為0.6,

∴由題意知.

∴隨機變量X的數學期望,方差.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求曲線的普通方程和曲線的直角坐標方程;

2)若點在曲線上,點在曲線上,求的最小值及此時點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論上的零點個數;

(2)當時,若存在,使,求實數的取值范圍.(為自然對數的底數,其值為2.71828……)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公園準備在一圓形水池里設置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,兩點為噴泉,圓心的中點,其中米,半徑米,市民可位于水池邊緣任意一點處觀賞.

(1)若當時,,求此時的值;

(2)設,且

(i)試將表示為的函數,并求出的取值范圍;

(ii)若同時要求市民在水池邊緣任意一點處觀賞噴泉時,觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,若函數4個零點,則實數k的取值范圍是______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】學校藝術節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預測如下:

甲說:作品獲得一等獎”; 乙說:作品獲得一等獎”;

丙說:兩件作品未獲得一等獎”; 丁說:作品獲得一等獎”.

評獎揭曉后,發(fā)現這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了更好地支持中小型企業(yè)的發(fā)展,某市決定對部分企業(yè)的稅收進行適當的減免,某機構調查了當地的中小型企業(yè)年收入情況,并根據所得數據畫出了樣本的頻率分布直方圖,下面三個結論:

樣本數據落在區(qū)間的頻率為0.45

如果規(guī)定年收入在500萬元以內的企業(yè)才能享受減免稅政策,估計有55%的當地中小型企業(yè)能享受到減免稅政策;

樣本的中位數為480萬元.

其中正確結論的個數為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某班主任對全班50名學生學習積極性和對待工作的態(tài)度進行了調查,統(tǒng)計數據如下所示:

積極參加班級工作

不太主動參加班級工作

合計

學習積極性高

18

7

25

學習積極性一般

6

19

25

合計

24

26

50

1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?

2)試運用獨立性檢驗的思想方法有多大把握認為學生的學習積極性與對班級工作的態(tài)度有關系?并說明理由.

本題參考數據:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案