(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
我們把定義在
上,且滿足
(其中常數(shù)
滿足
)的函數(shù)叫做似周期函數(shù).
(1)若某個似周期函數(shù)
滿足
且圖像關(guān)于直線
對稱.求證:函數(shù)
是偶函數(shù);
(2)當(dāng)
時,某個似周期函數(shù)在
時的解析式為
,求函數(shù)
,
的解析式;
(3)對于確定的
時,
,試研究似周期函數(shù)函數(shù)
在區(qū)間
上是否可能是單調(diào)函數(shù)?若可能,求出
的取值范圍;若不可能,請說明理由.
(1)因為
關(guān)于原點對稱, 又函數(shù)
的圖像關(guān)于直線
對稱,所以
又
,
用
代替
得
可知![]()
,
.即函數(shù)
是偶函數(shù);(2)
;(3)
.
【解析】
試題分析:因為
關(guān)于原點對稱, 又函數(shù)
的圖像關(guān)于直線
對稱,
所以
, 又
,
用
代替
得
可知![]()
,
.即函數(shù)
是偶函數(shù);
(2)當(dāng)
時,![]()
;
(3)當(dāng)
時,![]()
![]()
顯然
時,函數(shù)
在區(qū)間
上不是單調(diào)函數(shù)
又
時,
是增函數(shù),
此時![]()
若函數(shù)
在區(qū)間
上是單調(diào)函數(shù),那么它必須是增函數(shù),則必有
,解得
.
考點:本題考查了函數(shù)的性質(zhì)
點評:函數(shù)的基本性質(zhì)有單調(diào)性和奇偶性,它們是函數(shù)的兩個重要的性質(zhì),在解決函數(shù)問題中起著非常重要的作用,主要用于判斷函數(shù)單調(diào)性、求最值、求參數(shù)的取值范圍等
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分,第(1)小題6分,第(2)小題6分,第(3)小題6分)
若數(shù)列
滿足:
是常數(shù)),則稱數(shù)列
為二階線性遞推數(shù)列,且定義方程
為數(shù)列
的特征方程,方程的根稱為特征根; 數(shù)列
的通項公式
均可用特征根求得:
①若方程
有兩相異實根
,則數(shù)列通項可以寫成
,(其中
是待定常數(shù));
②若方程
有兩相同實根
,則數(shù)列通項可以寫成
,(其中
是待定常數(shù));
再利用
可求得
,進而求得
.
根據(jù)上述結(jié)論求下列問題:
(1)當(dāng)
,
(
)時,求數(shù)列
的通項公式;
(2)當(dāng)
,
(
)時,求數(shù)列
的通項公式;
(3)當(dāng)
,
(
)時,記
,若
能被數(shù)
整除,求所有滿足條件的正整數(shù)
的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆上海市盧灣區(qū)高三上學(xué)期期末數(shù)學(xué)理卷 題型:解答題
(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分8分,第3小題滿分6分.
已知負數(shù)
和正數(shù)
,且對任意的正整數(shù)n,當(dāng)
≥0時, 有[
,
]=
[
,
];當(dāng)
<0時, 有[
,
]= [
, ![]()
].
(1)求證數(shù)列{
}是等比數(shù)列;
(2)若
,求證![]()
;
(3)是否存在
,使得數(shù)列
為常數(shù)數(shù)列?請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟寧市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分18分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點
到其準線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓
交于A、C、D、B四點,試證明
為定值;
(Ⅲ)過A、B分別作拋物C的切線
且
交于點M,求
與
面積之和的最小值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市青浦區(qū)高三上學(xué)期期終學(xué)習(xí)質(zhì)量調(diào)研測試數(shù)學(xué)試卷 題型:解答題
(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
設(shè)
,對于項數(shù)為
的有窮數(shù)列
,令
為
中最大值,稱數(shù)列
為
的“創(chuàng)新數(shù)列”.例如數(shù)列
3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.
考查自然數(shù)
的所有排列,將每種排列都視為一個有窮數(shù)列
.
(1)若
,寫出創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列
;
(2)是否存在數(shù)列
的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的創(chuàng)新數(shù)列;若不存在,請說明理由.
(3)是否存在數(shù)列
,使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出滿足所有條件的數(shù)列
的個數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題
(本題滿分18分,其中第1小題6分,第2小題6分,第3小題6分)
已知數(shù)列
的首項為1,前
項和為
,且滿足
,
.?dāng)?shù)列
滿足
.
(1) 求數(shù)列
的通項公式;
(2) 當(dāng)
時,試比較
與
的大小,并說明理由;
(3) 試判斷:當(dāng)
時,向量![]()
是否可能恰為直線![]()
的方向向量?請說明你的理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com