【解析】數(shù)列
滿足:
, 且對任意正整數(shù)
都有![]()
,
,∴數(shù)列
是首項(xiàng)為
,公比為
的等比數(shù)列。![]()
,選A.
答案 A
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省成都市模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列
滿足
(I)求數(shù)列
的通項(xiàng)公式;
(II)若數(shù)列
中
,前
項(xiàng)和為
,且
證明:
![]()
【解析】第一問中,利用
,![]()
∴數(shù)列{
}是以首項(xiàng)a1+1,公比為2的等比數(shù)列,即
![]()
第二問中,
![]()
進(jìn)一步得到得
即![]()
即
是等差數(shù)列.
然后結(jié)合公式求解。
解:(I) 解法二、
,![]()
∴數(shù)列{
}是以首項(xiàng)a1+1,公比為2的等比數(shù)列,即
![]()
(II)
………②
由②可得:
…………③
③-②,得
即
…………④
又由④可得
…………⑤
⑤-④得![]()
即
是等差數(shù)列.
![]()
![]()
![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆黑龍江虎林高中高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
數(shù)列
,滿足![]()
(1)求
,并猜想通項(xiàng)公式
。
(2)用數(shù)學(xué)歸納法證明(1)中的猜想。
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式求解,并用數(shù)學(xué)歸納法加以證明。第一問利用遞推關(guān)系式得到
,
,
,
,并猜想通項(xiàng)公式![]()
第二問中,用數(shù)學(xué)歸納法證明(1)中的猜想。
①對n=1,
等式成立。
②假設(shè)n=k
時(shí),
成立,
那么當(dāng)n=k+1時(shí),![]()
,所以當(dāng)n=k+1時(shí)結(jié)論成立可證。
數(shù)列
,滿足![]()
(1)
,
,
,
并猜想通項(xiàng)公
。 …4分
(2)用數(shù)學(xué)歸納法證明(1)中的猜想。①對n=1,
等式成立。 …5分
②假設(shè)n=k
時(shí),
成立,
那么當(dāng)n=k+1時(shí),![]()
,
……9分
所以![]()
![]()
所以當(dāng)n=k+1時(shí)結(jié)論成立 ……11分
由①②知,猜想對一切自然數(shù)n
均成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆四川省高一下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知正項(xiàng)數(shù)列
的前n項(xiàng)和
滿足:
,
(1)求數(shù)列
的通項(xiàng)
和前n項(xiàng)和
;
(2)求數(shù)列
的前n項(xiàng)和
;
(3)證明:不等式
對任意的
,
都成立.
【解析】第一問中,由于
所以![]()
兩式作差
,然后得到![]()
從而
得到結(jié)論
第二問中,
利用裂項(xiàng)求和的思想得到結(jié)論。
第三問中,![]()
![]()
又![]()
結(jié)合放縮法得到。
解:(1)∵
∴![]()
∴![]()
∴
∴
………2分
又∵正項(xiàng)數(shù)列
,∴
∴
又n=1時(shí),![]()
∴
∴數(shù)列
是以1為首項(xiàng),2為公差的等差數(shù)列……………3分
∴
…………………4分
∴
…………………5分
(2)
…………………6分
∴![]()
…………………9分
(3)![]()
…………………12分
又![]()
,![]()
∴不等式
對任意的
,
都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆四川省高一下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列
滿足
,![]()
(1)求證:數(shù)列
是等比數(shù)列;
(2)求數(shù)列
的通項(xiàng)和前n項(xiàng)和
.
【解析】第一問中,利用
,得到
從而得證
第二問中,利用∴
∴
分組求和法得到結(jié)論。
解:(1)由題得
………4分
……………………5分
∴數(shù)列
是以2為公比,2為首項(xiàng)的等比數(shù)列;
……………………6分
(2)∴
……………………8分
∴
……………………9分
∴![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com