分析 設(shè)x$\overrightarrow{BA}$=$\overrightarrow{BC}$,則f(x)=|$\overrightarrow{BP}$-λ$\overrightarrow{BA}$|=|$\overrightarrow{BP}$-$\overrightarrow{BC}$|=|$\overrightarrow{CP}$|,由假設(shè)可得點C在直線AB上,故f(x)的最小值M為點P到AB的距離,再由圓的弦長公式可得結(jié)論.
解答 解:由A(cosα,sinα),B(cosβ,sinβ),P(cosγ,sinγ),可得
A,B,P均在單位圓上,
設(shè)x$\overrightarrow{BA}$=$\overrightarrow{BC}$,則f(x)=|$\overrightarrow{BP}$-λ$\overrightarrow{BA}$|=|$\overrightarrow{BP}$-$\overrightarrow{BC}$|=|$\overrightarrow{CP}$|,
由假設(shè)可得點C在直線AB上,
可得f(x)的最小值M為點P到AB的距離,
由Mmax=$\frac{5}{4}$,
可得|$\overrightarrow{AB}$|=2$\sqrt{1-(\frac{5}{4}-1)^{2}}$=$\frac{\sqrt{15}}{2}$.
故答案為:$\frac{\sqrt{15}}{2}$.
點評 本題考查向量知識的運用,考查圓的弦長公式的運用,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ?x∈R,f(x)>g(x) | B. | ?x1,x2∈R,f(x1)<g(x2) | ||
| C. | ?x0∈R,f(x0)=g(x0) | D. | ?x0∈R,使得?x∈R,f(x0)-g(x0)≤f(x)-g(x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | |a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|>a+b | B. | |a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|≤a+b | C. | |a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|≥a+b | D. | |a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|<a+b |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com