欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.若關(guān)于自變量x的函數(shù)y=log2a(4-ax)(a>0且a≠$\frac{1}{2}$)在[1,3]上是減函數(shù),則實(shí)數(shù)a的取值范圍是( $\frac{1}{2}$,$\frac{4}{3}$).

分析 由題意利用對(duì)數(shù)函數(shù)的定義域和值域以及單調(diào)性,可得$\left\{\begin{array}{l}{a>0}\\{2a>1}\\{4-a>0}\\{4-3a>0}\end{array}\right.$,由此求得a的取值范圍.

解答 解:∵關(guān)于自變量x的函數(shù)y=log2a(4-ax)(a>0且a≠$\frac{1}{2}$)在[1,3]上是減函數(shù),∴$\left\{\begin{array}{l}{a>0}\\{2a>1}\\{4-a>0}\\{4-3a>0}\end{array}\right.$,∴$\frac{1}{2}$<a<$\frac{4}{3}$,
故答案為:( $\frac{1}{2}$,$\frac{4}{3}$).

點(diǎn)評(píng) 本題主要考查復(fù)合函數(shù)的單調(diào)性,對(duì)數(shù)函數(shù)的定義域和值域以及單調(diào)性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.一個(gè)長(zhǎng)方體的八個(gè)頂點(diǎn)都在球面上,長(zhǎng)方體的長(zhǎng)、寬、高分別為$\sqrt{3},\sqrt{2},\sqrt{2}$,則球的表面積是7π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知過(guò)點(diǎn)A(0,1)的動(dòng)直線l與圓C:x2+y2-4x-2y-3=0交于M,N兩點(diǎn).
(Ⅰ)設(shè)線段MN的中點(diǎn)為P,求點(diǎn)P的軌跡方程;
(Ⅱ)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若(1+y2)(x-$\frac{1}{{x}^{4}y}$)n(n∈N*)的展開(kāi)式中存在常數(shù)項(xiàng),則常數(shù)項(xiàng)為45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=ax+k•a-x(0<a<1)為R上的奇函數(shù).
(1)求實(shí)數(shù)k的值;
(2)指出函數(shù)f(x)的單調(diào)性(不需要證明),并求使不等式f(4x-m•2x)+f(1-2x)<0恒成立的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若集合M={y|y=2017x},S={x|y=log2017(x-1)},則下列結(jié)論正確的是(  )
A.M=SB.M∩S=∅C.M∪S=SD.M∪S=M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在[0,+∞)上單調(diào)遞增,若對(duì)于任意實(shí)數(shù)t,f(-4t)≤f(2at2+a)(a∈R)恒成立,則a2的最小值是(  )
A.2B.4C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在△ABC中,a,b,c分別為角A,B,C所對(duì)的邊長(zhǎng),且c=-3bcosA.
(1)求$\frac{{{a^2}-{b^2}}}{c^2}$的值;  
(2)若tanC=$\frac{3}{4}$.試求tanB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.曲線 y=$\sqrt{x}$與 $y={x^{\frac{3}{2}}}$所圍成的封閉圖形的面積為( 。
A..$\frac{1}{2}$B.$\frac{4}{15}$C.$\frac{2}{3}$D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案