已知函數(shù)
.
(1)若
,求實數(shù)x的取值范圍;
(2)求
的最大值.
(1)
;(2)
.
解析試題分析:(1)本題實質(zhì)就是解不等式,
,當(dāng)然這是含絕對值的不等式,因此我們應(yīng)該根據(jù)絕對值的定義,按照絕對值符號里面的式子
的正負性分類討論,變?yōu)榻鈨蓚二次不等式,最后還要把兩個不等式的解集合并(即求并集),才能得到我們所要的結(jié)果;(2)本題實質(zhì)就是求新函數(shù)
的最大值,同樣由于式子中含有絕對值符號,因此我們按照絕對值符號里面的式子
的正負性分類討論去掉絕對值符號,變成求兩個二次函數(shù)在相應(yīng)區(qū)間上的最大值,最后在兩個最大值中取最大的一個就是我們所要求的最大值;當(dāng)然這題我們可以借助于(1)的結(jié)論,最大值一定在(1)中解集區(qū)間里取得,從而可以避免再去分類討論,從而簡化它的過程.
試題解析:(1)當(dāng)
時,
1分
由
,得
,
整理得
,所以
; 3分
當(dāng)
時,
, 4分
由
,得
,
整理得
,由
得
6分
綜上
的取值范圍是
; 7分
(2)由(1)知,
的最大值必在
上取到, 9分
所以![]()
所以當(dāng)
時,
取到最大值為
. 14分
考點:(1)解不等式;(2)函數(shù)的最大值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)若函數(shù)
為偶函數(shù),求
的值;
(Ⅱ)若
,求函數(shù)
的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)
時,若對任意的
,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知實數(shù)
,函數(shù)
.
(1)當(dāng)
時,求
的最小值;
(2)當(dāng)
時,判斷
的單調(diào)性,并說明理由;
(3)求實數(shù)
的范圍,使得對于區(qū)間
上的任意三個實數(shù)
,都存在以
為邊長的三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3+ax-2,(a
R).
(l)若f(x)在區(qū)間(1,+
)上是增函數(shù),求實數(shù)a的取值范圍;
(2)若
,且f(x0)=3,求x0的值;
(3)若
,且在R上是減函數(shù),求實數(shù)a的取值范圍。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com