分析 直接利用數(shù)學(xué)歸納法的證明步驟證明不等式,(1)驗(yàn)證n=1時(shí)不等式成立;(2)假設(shè)當(dāng)n=k(k≥1)時(shí)成立,利用放縮法證明n=k+1時(shí),不等式也成立.
解答 證明:(1)當(dāng)n=2時(shí),不等式左邊=1+$\frac{1}{3}$=$\frac{4}{3}$=$\frac{8}{6}$=$\frac{\sqrt{64}}{6}$,不等式右邊=$\frac{\sqrt{5}}{2}$=$\frac{3\sqrt{5}}{6}$=$\frac{\sqrt{45}}{6}$,不等式成立,
(2)假設(shè)n=k時(shí),不等式成立,即:(1+$\frac{1}{3}$)(1+$\frac{1}{5}$)(1+$\frac{1}{7}$)…(1+$\frac{1}{2k-1}$)>$\frac{\sqrt{2k+1}}{2}$,
那么當(dāng)n=k+1是,即(1+$\frac{1}{3}$)(1+$\frac{1}{5}$)(1+$\frac{1}{7}$)…(1+$\frac{1}{2k-1}$)(1+$\frac{1}{2k+1}$)>$\frac{\sqrt{2k+1}}{2}$•(1+$\frac{1}{2k+1}$)=$\frac{\sqrt{2k+1}}{2}$•$\frac{2k+2}{2k+1}$=$\frac{k+1}{\sqrt{2k+1}}$,
∵(2k+1)(2k+3)<4(k+1)2,
∴$\sqrt{2k+1}$•$\sqrt{2k+3}$<2(k+1),
∴$\frac{k+1}{\sqrt{2k+1}}$>$\frac{\sqrt{2k+3}}{2}$,
∴當(dāng)n=k+1時(shí),不等式也成立,
根據(jù)(1)(2)可得不等式對(duì)所有的n≥2都成立.
點(diǎn)評(píng) 本題是中檔題,考查數(shù)學(xué)歸納法的證明步驟,注意不等式的證明方法,放縮法的應(yīng)用,考查邏輯推理能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | S10>S9 | B. | a8=0 | ||
| C. | d<0 | D. | S7與S8均為Sn的最大值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com