【題目】已知某山區(qū)小學(xué)有100名四年級學(xué)生,將全體四年級學(xué)生隨機(jī)按00~99編號,并且按編號順序平均分成10組.現(xiàn)要從中抽取10名學(xué)生,各組內(nèi)抽取的編號按依次增加10進(jìn)行系統(tǒng)抽樣.
![]()
(1)若抽出的一個號碼為22,則此號碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學(xué)生的號碼;
(2)分別統(tǒng)計(jì)這10名學(xué)生的數(shù)學(xué)成績,獲得成績數(shù)據(jù)的莖葉圖如圖4所示,求該樣本的方差;
(3)在(2)的條件下,從這10名學(xué)生中隨機(jī)抽取兩名成績不低于73分的學(xué)生,求被抽取到的兩名學(xué)生的成績之和不小于154分的概率.
【答案】(1)第3組02,12,22,32,42,52,62,72,82,92. (2)
(3)![]()
【解析】試題分析:第一問根據(jù)系統(tǒng)抽樣的方法,分析出其所在的組數(shù),從而進(jìn)一步確定被抽出的學(xué)生的號碼,第二問先確定成績不低于
分的人數(shù)一共
人,從中任抽兩人共有
種不同的取法,成績之和不小于
分的有
種,從而求得概率.
試題解析:(1)由題意,得抽出號碼為
的組數(shù)為
.
分
因?yàn)?/span>
,所以第
組抽出的號碼應(yīng)該為
,抽出的
名學(xué)生的號碼依次分別為:
.
分
(2)從這
名學(xué)生中隨機(jī)抽取兩名成績不低于
分的學(xué)生,共有如下
種不同的取法:
.
分
其中成績之和不小于
分的有如下
種:
分
故被抽取到的兩名學(xué)生的成績之和不小于
分的概率為:
分
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,
,圖中的一系列圓是圓心分別為
,
的兩組同心圓,每組同心圓的半徑依次為
,
,
,
按“加
”依次遞增,點(diǎn)
是某兩圓的一個交點(diǎn),設(shè):
以
,
為焦點(diǎn),且過點(diǎn)
的橢圓為
;
以
,
為焦點(diǎn),且過點(diǎn)
的雙曲線為
,
則
(
)雙曲線
離心率
__________.
(
)若以
為
軸正方向,線段
中點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,則
橢圓
方程為__________.
(3)雙曲線
漸近線方程為__________.
(4)在兩組同心圓的交點(diǎn)中,在橢圓
上的點(diǎn)共__________個.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖,長方形材料
中,已知
,
.點(diǎn)
為材料
內(nèi)部一點(diǎn),
于
,
于
,且
,
. 現(xiàn)要在長方形材料
中裁剪出四邊形材料
,滿足
,點(diǎn)
、
分別在邊
,
上.
(1)設(shè)
,試將四邊形材料
的面積表示為
的函數(shù),并指明
的取值范圍;
(2)試確定點(diǎn)
在
上的位置,使得四邊形材料
的面積
最小,并求出其最小值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐
中,平面
平面
,側(cè)面
是邊長為
的等邊三角形,底面
是矩形,且
,則該四棱錐外接球的表面積等于__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px過點(diǎn)P(1,1).過點(diǎn)(0,
)作直線l與拋物線C交于不同的兩點(diǎn)M,N,過點(diǎn)M作x軸的垂線分別與直線OP,ON交于點(diǎn)A,B,其中O為原點(diǎn).
(Ⅰ)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)求證:A為線段BM的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓x2+y2-2y-1=0關(guān)于直線y=x對稱的圓的方程是 ( )
A. (x-1)2+y2=2 B. (x+1)2+y2=2 C. (x-1)2+y2=4 D. (x+1)2+y2=4
【答案】A
【解析】圓
的標(biāo)準(zhǔn)方程為
,所以圓心為(0,1),半徑為
,圓心關(guān)于直線
的對稱點(diǎn)是(1,0),所以圓x2+y2-2y-1=0關(guān)于直線y=x對稱的圓的方程是
,選A.
點(diǎn)睛:本題主要考查圓關(guān)于直線的對稱的圓的方程,屬于基礎(chǔ)題。解答本題的關(guān)鍵是求出圓心關(guān)于直線的對稱點(diǎn),兩圓半徑相同。
【題型】單選題
【結(jié)束】
8
【題目】已知雙曲線的離心率為
,焦點(diǎn)是
,
,則雙曲線方程為 ( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬, 田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)選一匹進(jìn)行一場比賽,則田忌的馬獲勝的概率為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)
,動圓
經(jīng)過點(diǎn)
且和直線
相切,記動圓的圓心
的軌跡為曲線
.
(1)求曲線
的方程;
(2)設(shè)曲線
上一點(diǎn)
的橫坐標(biāo)為
,過
的直線交
于一點(diǎn)
,交
軸于點(diǎn)
,過點(diǎn)
作
的垂線交
于另一點(diǎn)
,若
是
的切線,求
的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com