【題目】在四棱錐
中,平面
平面
,側(cè)面
是邊長(zhǎng)為
的等邊三角形,底面
是矩形,且
,則該四棱錐外接球的表面積等于__________.
【答案】![]()
【解析】∵平面SAB⊥平面SAD,平面SAB∩平面SAD=SA,側(cè)面SAB是邊長(zhǎng)為
的等邊三角形,設(shè)AB的中點(diǎn)為E,SA的中點(diǎn)為F,
則BF⊥SA,∴BF⊥平面SAD,∴BF⊥AD,底面ABCD是矩形,∴AD⊥平面SAB,SE平面SAB,
∴AD⊥SE,又SE⊥AB,AB∩AD=A,
∴SE⊥底面ABCD,作圖如下:
![]()
∵SAB是邊長(zhǎng)為
的等邊三角形,
∴
.
又底面ABCD是矩形,且BC=4,
∴矩形ABCD的對(duì)角線長(zhǎng)為
,
∴矩形ABCD的外接圓的半徑為
.
設(shè)該四棱錐外接球的球心為O,半徑為R,O到底面的距離為h,
則r2+h2=R2,即7+h2=R2,又R2=22+(SEh)2=4+(3h)2,
∴7+h2=4+(3h)2,
∴h=1.
∴R2=7+h2=8,
∴該四棱錐外接球的表面積
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列
中,
,且
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,數(shù)列
滿足
,
.
(Ⅰ)當(dāng)
時(shí),求證:數(shù)列
為等差數(shù)列并求
;
(Ⅱ)證明:對(duì)于一切正整數(shù)
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】盒子里放有外形相同且編號(hào)為1,2,3,4,5的五個(gè)小球,其中1號(hào)與2號(hào)是黑球,3號(hào)、4號(hào)與5號(hào)是紅球,從中有放回地每次取出1個(gè)球,共取兩次.
(1)求取到的2個(gè)球中恰好有1個(gè)是黑球的概率;
(2)求取到的2個(gè)球中至少有1個(gè)是紅球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐
中,平面
平面
,側(cè)面
是邊長(zhǎng)為
的等邊三角形,底面
是矩形,且
,則該四棱錐外接球的表面積等于__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一條光線經(jīng)過P(2,3)點(diǎn),射在直線l:x+y+1=0上,反射后穿過點(diǎn)Q(1,1).
(1)求入射光線的方程;
(2)求這條光線從P到Q的長(zhǎng)度.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某山區(qū)小學(xué)有100名四年級(jí)學(xué)生,將全體四年級(jí)學(xué)生隨機(jī)按00~99編號(hào),并且按編號(hào)順序平均分成10組.現(xiàn)要從中抽取10名學(xué)生,各組內(nèi)抽取的編號(hào)按依次增加10進(jìn)行系統(tǒng)抽樣.
![]()
(1)若抽出的一個(gè)號(hào)碼為22,則此號(hào)碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學(xué)生的號(hào)碼;
(2)分別統(tǒng)計(jì)這10名學(xué)生的數(shù)學(xué)成績(jī),獲得成績(jī)數(shù)據(jù)的莖葉圖如圖4所示,求該樣本的方差;
(3)在(2)的條件下,從這10名學(xué)生中隨機(jī)抽取兩名成績(jī)不低于73分的學(xué)生,求被抽取到的兩名學(xué)生的成績(jī)之和不小于154分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列
的前
項(xiàng)和記為
,
,點(diǎn)
在直線
上,
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)
,
,
是數(shù)列
的前
項(xiàng)和,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,且過點(diǎn)![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)直線
與圓
相切于點(diǎn)
,且
與橢圓
只有一個(gè)公共點(diǎn)
.
①求證:
;
②當(dāng)
為何值時(shí),
取得最大值?并求出最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com