【題目】在豎直坐標(biāo)平面
中,從坐標(biāo)原點(diǎn)
出發(fā)以同一初速度
和不同的發(fā)射角(即發(fā)射方向與
軸正向之間的夾角)
射出的質(zhì)點(diǎn)(不計(jì)質(zhì)點(diǎn)的大小),在重力(設(shè)重力加速度為
)的作用下運(yùn)動(dòng)軌跡是拋物線,所有這些拋物線組成一個(gè)拋物線族(即拋物線的集合).若兩條拋物線在同一個(gè)交點(diǎn)處的切線互相垂直,則稱這個(gè)交點(diǎn)為正交點(diǎn).證明:此拋物線族的所有正交點(diǎn)的集合是一段橢圓弧,并求出這個(gè)橢圓弧的方程(包括變量的取值范圍),再畫出它的草圖.注. 拋物線
在其上的點(diǎn)
處的切線的斜率為
.
【答案】見解析
【解析】
如圖,設(shè)在時(shí)刻
時(shí)質(zhì)點(diǎn)坐標(biāo)為
,
![]()
時(shí)質(zhì)點(diǎn)在坐標(biāo)原點(diǎn)
.由物理學(xué)公式得
![]()
由①得
,代入②得
,
亦即
. ③
這就是以
為發(fā)射角的質(zhì)點(diǎn)的運(yùn)動(dòng)軌跡方程.
另外,由
,知
,
與
同號(hào).
由題注知,拋物線③在點(diǎn)
處的切線的斜率為
.
設(shè)正交點(diǎn)為
,兩條拋物線所對應(yīng)的發(fā)射角分別為
和
,則由“正交點(diǎn)”的定義得
.
又因?yàn)?/span>
在這兩條拋物線上,故
. ⑤
顯然原點(diǎn)
是“正交點(diǎn)”,這只須取
即可.故下面設(shè)
.由⑤得
把上式代入④得
,
即
. ⑥
又由⑤知,
和
是下列一元二次方程(設(shè)
為未知元)
⑦
的兩個(gè)根,故由根與系數(shù)的關(guān)系得
. ⑧
把⑧代入⑥得
,
,
即
. ⑨
另外,由
(因?yàn)?/span>
)知⑦應(yīng)有兩個(gè)不同的實(shí)根,從而⑦的判別式應(yīng)大于零,即
,
亦即
. ⑩
又由⑨得
,所以,⑩變?yōu)?/span>
,
,
即
. ![]()
但由⑨得
,這樣由
知,只能有
. ![]()
綜合⑨和
知,所有“正交點(diǎn)“的集合是下列方程所表示的曲線:
. ![]()
它所表示的曲線如下圖所示,即橢圓上除去上頂點(diǎn)
以外,卻都可以成為“正交點(diǎn)”.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,
.
(Ⅰ)若直線
與曲線
相切于點(diǎn)
,證明:
;
(Ⅱ)若不等式
有且僅有兩個(gè)整數(shù)解,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廣場要?jiǎng)澇鲆粔K矩形區(qū)域
,在其中開辟三塊完全相同的矩形綠化園圃,空白處均鋪設(shè)
寬的走道,如圖.已知三塊園圃的總面積為
,設(shè)園圃小矩形的一邊長為
,區(qū)域
的面積為
(單位:
).
![]()
(1)求
的最小值.
(2)若區(qū)域
的面積不超過
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
為常數(shù).
若曲線
在
處的切線在兩坐標(biāo)軸上的截距相等,求
的值;
若對
,都有
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用
年的隔熱層,每厘米厚的隔熱層建造成本為
萬元.該建筑物每年的能源消耗費(fèi)用
(單位:萬元)與隔熱層厚度
(單位:厘米)滿足關(guān)系:
.若不建隔熱層,每年的能源消耗費(fèi)用為
萬元.設(shè)
為隔熱層建造費(fèi)用與
年的能源消耗費(fèi)用之和.
(1)求
的值及
的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用
最小,并求其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,平面
平面
,
,
是等邊三角形,已知
,
.
![]()
(1)設(shè)
是
上的一點(diǎn),證明:平面
平面
;
(2)求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南充高中扎實(shí)推進(jìn)陽光體育運(yùn)動(dòng),積極引導(dǎo)學(xué)生走向操場,走進(jìn)大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動(dòng)時(shí)長35分鐘.現(xiàn)為了了解學(xué)生的體育鍛煉時(shí)間,采用簡單隨機(jī)抽樣法抽取了100名學(xué)生,對其平均每日參加體育鍛煉的時(shí)間(單位:分鐘)進(jìn)行調(diào)查,按平均每日體育鍛煉時(shí)間分組統(tǒng)計(jì)如下表:
分組 |
|
|
|
|
|
|
男生人數(shù) | 2 | 16 | 19 | 18 | 5 | 3 |
女生人數(shù) | 3 | 20 | 10 | 2 | 1 | 1 |
若將平均每日參加體育鍛煉的時(shí)間不低于120分鐘的學(xué)生稱為“鍛煉達(dá)人”.
(1)將頻率視為概率,估計(jì)我校7000名學(xué)生中“鍛煉達(dá)人”有多少?
(2)從這100名學(xué)生的“鍛煉達(dá)人”中按性別分層抽取5人參加某項(xiàng)體育活動(dòng).
①求男生和女生各抽取了多少人;
②若從這5人中隨機(jī)抽取2人作為組長候選人,求抽取的2人中男生和女生各1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△
中,
,
分別為
,
的中點(diǎn),
為
的中點(diǎn),
,
.將△
沿
折起到△
的位置,使得平面
平面
,
為
的中點(diǎn),如圖2.
![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)線段
上是否存在點(diǎn)
,使得
平面
?說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com