【題目】甲、乙兩位同學(xué)參加詩詞大會,設(shè)甲、乙兩人每道題答對的概率分別為
和
.假定甲、乙兩位同學(xué)答題情況互不影響,且每人各次答題情況相互獨立.
(1)用
表示甲同學(xué)連續(xù)三次答題中答對的次數(shù),求隨機變量
的分布列和數(shù)學(xué)期望;
(2)設(shè)
為事件“甲、乙兩人分別連續(xù)答題三次,甲同學(xué)答對的次數(shù)比乙同學(xué)答對的次數(shù)恰好多2”,求事件
發(fā)生的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù):![]()
(I)當(dāng)
時,求
的最小值;
(II)對于任意的
都存在唯一的
使得
,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
的左、右焦點分別為
,
,離心率為
,點
在橢圓C上,且
⊥![]()
,△F1MF2的面積為
.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知直線l與橢圓C交于A,B兩點,
,若直線l始終與圓
相切,求半徑r的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
在極坐標(biāo)系下,已知圓O:
和直線![]()
(1)求圓O和直線l的直角坐標(biāo)方程;
(2)當(dāng)
時,求直線l與圓O公共點的一個極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某地區(qū)2009年至2018年芯片產(chǎn)業(yè)投資額
(單位:億元)的散點圖,為了預(yù)測該地區(qū)2019年的芯片產(chǎn)業(yè)投資額,建立了
與時間變量
的四個線性回歸模型.根據(jù)2009年至2018年的數(shù)據(jù)建立模型①;根據(jù)2010年至2017年的數(shù)據(jù)建立模型②;根據(jù)2011年至2016年的數(shù)據(jù)建立模型③;根據(jù)2014年至2018年的數(shù)據(jù)建立模型④.則預(yù)測值更可靠的模型是( )
![]()
A.①B.②C.③D.④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭為了解冬季用電量
(度)與氣溫
之間的關(guān)系,隨機統(tǒng)計了某5天的用電量與當(dāng)天氣溫,并制作了對照表,經(jīng)過統(tǒng)計分析,發(fā)現(xiàn)氣溫在一定范圍內(nèi)時,用電量與氣溫具有線性相關(guān)關(guān)系:
| 0 | 1 | 2 | 3 | 4 |
| 15 | 12 | 11 | 9 | 8 |
(1)求出用電量
關(guān)于氣溫
的線性回歸方程;
(2)在這5天中隨機抽取兩天,求至少有一天用電量低于10(度)的概率.
(附:回歸直線方程的斜率和截距的最小二乘法估計公式為
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假定一個彈珠(設(shè)為質(zhì)點
,半徑忽略不計)的運行軌跡是以小球(半徑
)的中心
為右焦點的橢圓
,已知橢圓的右端點
到小球表面最近的距離是1,橢圓的左端點
到小球表面最近的距離是5.
.
(1)求如圖給定的坐標(biāo)系下橢圓
的標(biāo)準(zhǔn)方程;
(2)彈珠由點
開始繞橢圓軌道逆時針運行,第一次與軌道中心
的距離是
時,彈珠由于外力作用發(fā)生變軌,變軌后的軌道是一條直線,稱該直線的斜率
為“變軌系數(shù)”,求
的取值范圍,使彈珠和小球不會發(fā)生碰撞.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】湖北省第二屆(荊州)園林博覽會于2019年9月28日至11月28日在荊州園博園舉辦,本屆園林博覽會以“輝煌荊楚,生態(tài)園博”為主題,展示荊州生態(tài)之美,文化之韻,吸引更多優(yōu)秀企業(yè)來荊投資,從而促進(jìn)荊州經(jīng)濟(jì)快速發(fā)展.在此次博覽會期間,某公司帶來了一種智能設(shè)備供采購商洽談采購,并決定大量投放荊州市場.已知該種設(shè)備年固定研發(fā)成本為50萬元,每生產(chǎn)一臺需另投入80元,設(shè)該公司一年內(nèi)生產(chǎn)該設(shè)備
萬臺且全部售完,每萬臺的銷售收入
(萬元)與年產(chǎn)量
(萬臺)滿足如下關(guān)系式:
.
(1)寫出年利潤
(萬元)關(guān)于年產(chǎn)量
(萬臺)的函數(shù)解析式;(利潤=銷售收入-成本)
(2)當(dāng)年產(chǎn)量為多少萬臺時,該公司獲得的年利潤最大?并求最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,點M、N分別在AB1、BC1上,且AM=
AB1,BN=
BC1,則下列結(jié)論:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,
正確命題的個數(shù)是( )
![]()
A.1B.2C.3D.4
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com