【題目】若平面點(diǎn)集
滿足:任意點(diǎn)
,存在
,都有
,則稱該點(diǎn)集
是“
階聚合”點(diǎn)集。現(xiàn)有四個(gè)命題:
①若
,則存在正數(shù)
,使得
是“
階聚合”點(diǎn)集;
②若
,則
是“
階聚合”點(diǎn)集;
③若
,則
是“2階聚合”點(diǎn)集;
④若
是“
階聚合”點(diǎn)集,則
的取值范圍是
.
其中正確命題的序號(hào)為( )
A.①④
B.②③
C.①②
D.③④
【答案】A
【解析】①:M={(x,y)|y=2x},則點(diǎn)集為
,(tx,ty)∈M , ①正確;
②:∵M={(x,y)|y=x2},取(2,4),而點(diǎn)(1,2)M , ②有誤;
③:取
為集合M上的一點(diǎn),則點(diǎn)
,③有誤;
④:∵x2+y21,根據(jù)題意,得∴t2(x2+y2)1恒成立,
則
即 ![]()
∵t∈(0,+∞),∴t∈(0,1].④正確;
故答案為:A
由題可得,若M中點(diǎn)的橫縱坐標(biāo)同時(shí)擴(kuò)大t倍仍在M中,則成為t階聚合,所以將每一個(gè)選項(xiàng)的x,y同時(shí)擴(kuò)大,看是否滿足M中的條件即可。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程是
(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2sinθ.
(Ⅰ) 求曲線C1與C2交點(diǎn)的平面直角坐標(biāo);
(Ⅱ) 點(diǎn)A,B分別在曲線C1 , C2上,當(dāng)|AB|最大時(shí),求△OAB的面積(O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅原理:“冪勢既同,則積不容異”,它是中國古代一個(gè)涉及幾何體體積問題,意思是兩個(gè)等高的幾何體,如在同高處的截面積恒相等,則體積相等,設(shè)A,B為兩個(gè)等高的幾何體,p:A,B的體積相等,q:A,B在同高處的截面積不恒相等,根據(jù)祖暅原理可知,q是-p的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和Sn,且滿足a3·a5=112,a1+a7=22.
(1)求等差數(shù)列{an}的第七項(xiàng)a7和通項(xiàng)公式an;
(2)若數(shù)列{bn}的通項(xiàng)bn=an+an+1,{bn}的前n項(xiàng)和Sn,寫出使得Sn小于55時(shí)所有可能的bn的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,|an+1-an|=pn,n∈N*,Sn為數(shù)列{an}的前n項(xiàng)和.
(1)若{an}是遞增數(shù)列,且a1,2a2,3a3成等差數(shù)列,求p的值;
(2)若p=
,且{a2n-1}是遞增數(shù)列,{a2n}是遞減數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,令cn=n(an+1-an),求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列
中,
,其前
項(xiàng)和為
,等比數(shù)列
的各項(xiàng)均為正數(shù),
,公比為
,且
,
.
(Ⅰ)求
與
.
(Ⅱ)設(shè)數(shù)列
滿足
,求
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD中,E、F分別是AB、CD上的點(diǎn),BE=CF=1,BC=2,AB=CD=3,P、Q分別為DE、CF的中點(diǎn),現(xiàn)沿著EF翻折,使得二面角A﹣EF﹣B大小為
.
(Ⅰ)求證:PQ∥平面BCD;
(Ⅱ)求二面角A﹣DB﹣E的余弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是數(shù)列
的前
項(xiàng)和,并且
,對任意正整數(shù)
,
,設(shè)
(
).
(1)證明:數(shù)列
是等比數(shù)列,并求
的通項(xiàng)公式;
(2)設(shè)
,求證:數(shù)列
不可能為等比數(shù)列.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com