【題目】關(guān)于x的不等式ax2+bx+c<0的解集為{x|x<﹣2或x>﹣
},則關(guān)于x的不等式ax2﹣bx+c>0的解集為 .
【答案】![]()
【解析】解:∵關(guān)于x的不等式ax2+bx+c<0的解集為{x|x<﹣2或x>﹣
}, ∴a<0,且方程ax2+bx+c=0的根為x=﹣2或x=﹣
,
由根與系數(shù)的關(guān)系式得:
﹣2+(﹣
)=﹣
,(﹣2)×(﹣
)=
,
即
=
,
=1;
又關(guān)于x的不等式ax2﹣bx+c>0可化為
x2﹣
x+
<0,
即x2﹣
x+1<0,
解不等式,得
<x<2,
∴不等式ax2﹣bx+c>0的解集為{x|
<x<2};
所以答案是:{x|
<x<2}.
【考點精析】根據(jù)題目的已知條件,利用解一元二次不等式的相關(guān)知識可以得到問題的答案,需要掌握求一元二次不等式![]()
解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項系數(shù)為正時,小于取中間,大于取兩邊.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有1名女教師和2名男教師參加說題比賽,共有2道備選題目,若每位選手從中有放回地隨機(jī)選出一道題進(jìn)行說題,其中恰有一男一女抽到同一道題的概率為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù)x1 , x2 , x3 , x4 , x5的平均數(shù)是2,方差是
,那么另一組數(shù)據(jù)2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均數(shù),方差分別是( )
A.3, ![]()
B.3, ![]()
C.4, ![]()
D.4, ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
=(
sinx,m+cosx),
=(cosx,﹣m+cosx),且f(x)= ![]()
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈
時,f(x)的最小值是﹣4,求此時函數(shù)f(x)的最大值,并求出相應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解甲、乙兩個工廠生產(chǎn)的輪胎的寬度是否達(dá)標(biāo),分別從兩廠隨機(jī)各選取了10個輪胎,將每個輪胎的寬度(單位:mm)記錄下來并繪制出如下的折線圖:
![]()
(1)分別計算甲、乙兩廠提供的10個輪胎寬度的平均值;
(2)輪胎的寬度在
內(nèi),則稱這個輪胎是標(biāo)準(zhǔn)輪胎.試比較甲、乙兩廠分別提供的10個輪胎中所有標(biāo)準(zhǔn)輪胎寬度的方差的大小,根據(jù)兩廠的標(biāo)準(zhǔn)輪胎寬度的平均水平及其波動情況,判斷這兩個工廠哪個廠的輪胎相對更好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】原命題:“
,
為兩個實數(shù),若
,則
,
中至少有一個不小于1”,下列說法錯誤的是( )
A. 逆命題為:若
,
中至少有一個不小于1,則
,為假命題
B. 否命題為:若
,則
,
都小于1,為假命題
C. 逆否命題為:若
,
都小于1,則
,為真命題
D. “
”是“
,
中至少有一個不小于1”的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面向量
、
滿足|
|=|
|=1,
=
,若向量
滿足|
﹣
+
|≤1,則|
|的最大值為( )
A.1
B.![]()
C.![]()
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 設(shè)an是Sn與2的等差中項,數(shù)列{bn}中,b1=1,點P(bn , bn+1)在直線y=x+2上.
(1)求an , bn;
(2)若數(shù)列{bn}的前n項和為Bn , 比較
+
+…+
與1的大。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com