【題目】我國(guó)南宋時(shí)期著名的數(shù)學(xué)家秦九韶在其著作《數(shù)書(shū)九章》中,提出了已知三角形三邊長(zhǎng)求三角形的面積的公式,與著名的海倫公式完全等價(jià),由此可以看出我國(guó)古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開(kāi)平方得積.”若把以上這段文字寫(xiě)成公式,即
,其中a、b、c分別為
內(nèi)角A、B、C的對(duì)邊.若
,
,則
面積S的最大值為
A.
B.
C.
D. ![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線與橢圓
有相同焦點(diǎn),且經(jīng)過(guò)點(diǎn)(4,6).
(1)求雙曲線方程;
(2)若雙曲線的左,右焦點(diǎn)分別是F1,F2,試問(wèn)在雙曲線上是否存在點(diǎn)P,使得|PF1|=5|PF2|.請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
右焦點(diǎn)為
,右頂點(diǎn)為
,點(diǎn)
在橢圓上,且
軸,直線
交
軸于點(diǎn)
,若
;
(1)求橢圓的離心率;
(2)設(shè)經(jīng)過(guò)點(diǎn)
且斜率為
的直線
與橢圓在
軸上方的交點(diǎn)為
,圓
同時(shí)與
軸和直線
相切,圓心
在直線
上,且
. 求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)
的圖象向右平移
個(gè)單位后得到函數(shù)
的圖象,則( )
A.
圖象關(guān)于直線
對(duì)稱(chēng) B.
圖象關(guān)于點(diǎn)
中心對(duì)稱(chēng)
C.
在區(qū)間
單調(diào)遞增 D.
在區(qū)間
上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)
的直線
與直線
垂直.
(1) 若
,且點(diǎn)
在函數(shù)
的圖象上,求直線
的一般式方程;
(2)若點(diǎn)
在直線
上,判斷直線
是否經(jīng)過(guò)定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
是圓的直徑,
垂直圓所在的平面,
是圓上的一點(diǎn).
![]()
(1)求證:平面
平面
;
(2)若
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
與原點(diǎn)
為圓心的圓相交所得弦長(zhǎng)為
.
(1)若直線
與圓
切于第一象限,且直線
與坐標(biāo)軸交于點(diǎn)
,當(dāng)
面積最小時(shí),求直線
的方程;
(2)設(shè)
是圓
上任意兩點(diǎn),點(diǎn)
關(guān)于
軸的對(duì)稱(chēng)點(diǎn)為
,若直線
分別交于
軸與點(diǎn)
和
,問(wèn)
是否為定值?若是,請(qǐng)求處該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓
(a>b>0)的左焦點(diǎn)為F,上頂點(diǎn)為B. 已知橢圓的離心率為
,點(diǎn)A的坐標(biāo)為
,且
.
(I)求橢圓的方程;
(II)設(shè)直線l:
與橢圓在第一象限的交點(diǎn)為P,且l與直線AB交于點(diǎn)Q. 若
(O為原點(diǎn)) ,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
是等邊三角形,
是
邊上的動(dòng)點(diǎn)(含端點(diǎn)),記
,
.
![]()
(1)求
的最大值;
(2)若
,求
的面積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com