【題目】已知
是雙曲線
的左右焦點,以
為直徑的圓與雙曲線的一條漸近線交于點
,與雙曲線交于點
,且
均在第一象限,當(dāng)直線
時,雙曲線的離心率為
,若函數(shù)
,則
()
A. 1 B.
C. 2 D. ![]()
【答案】C
【解析】雙曲線的
,雙曲線的漸近線方程為
與圓
聯(lián)立,解得
,與雙曲線方程
聯(lián)立,解得
,即為
,直線
與直線
平行時,既有
,即
,既有
,
,即
,故選C.
【方法點晴】本題主要考查利用雙曲線的簡單性質(zhì)求雙曲線的離心率、雙曲線的漸近線,屬于難題. 求解與雙曲線性質(zhì)有關(guān)的問題時要結(jié)合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當(dāng)涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求與離心率有關(guān)的問題,應(yīng)先將
用有關(guān)的一些量表示出來,再利用其中的一些關(guān)系構(gòu)造出關(guān)于e的等式.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4一5:不等式選講.
已知函數(shù)
.
(1)求
的解集;
(2)設(shè)函數(shù)
,若
對任意的
都成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)已知橢圓C:
的離心率為
,
是橢圓的兩個焦點,
是橢圓上任意一點,且
的周長是
.
![]()
(1)求橢圓C的方程;
(2)設(shè)圓T:
,過橢圓的上頂點作圓T的兩條切線交橢圓于E、F兩點,當(dāng)圓心在
軸上移動且
時,求EF的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
是自然對數(shù)的底數(shù).
(1)證明:當(dāng)
時,
;
(2)設(shè)
為整數(shù),函數(shù)
有兩個零點,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱錐
中,已知異面直線
與
所成的角為
,給出下面三個命題:
:若
,則此四棱錐的側(cè)面積為
;
:若
分別為
的中點,則
平面
;
:若
都在球
的表面上,則球
的表面積是四邊形
面積的
倍.
在下列命題中,為真命題的是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐曲線
:
(
為參數(shù))和定點
,
,
是此圓錐曲線
的左、右焦點.
(1)以原點為極點,以
軸的正半軸為極軸建立極坐標(biāo)系,求直線
的極坐標(biāo)方程;
(2)經(jīng)過
且與直線
垂直的直線交此圓錐曲線
于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),在[0,1]上f(x)=2x+ln(x+1)-1.
(1)求函數(shù)f(x)的解析式;并判斷f(x)在[-1,1]上的單調(diào)性(不要求證明);
(2)解不等式f(2x-1)+f(1-x2)≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點E在線段AC上,CE=4,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連接AB,BE,如圖②所示,設(shè)點F是AB的中點.
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為AC上一點,求三棱錐B-DEG的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本.用系統(tǒng)抽樣法,將全體職工隨機按1~200編號,并按編號順序平均分為40組(1~5號,6~10號,…,196~200號).若第5組抽出的號碼為22,則第8組抽出的號碼應(yīng)是________.若用分層抽樣法,則40歲的以下的年齡段應(yīng)抽取__________人.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com