【題目】某校隨機(jī)調(diào)查了80位學(xué)生,以研究學(xué)生中愛好羽毛球運(yùn)動與性別的關(guān)系,得到下面的
列聯(lián)表:
愛好 | 不愛好 | 合計(jì) | |
男 | 20 | 30 | 50 |
女 | 10 | 20 | 30 |
合計(jì) | 30 | 50 | 80 |
(Ⅰ)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查了本校的3名學(xué)生,設(shè)這3人中愛好羽毛球運(yùn)動的人數(shù)為
,求
的分布列,數(shù)學(xué)期望及方差;
(Ⅱ)根據(jù)表中數(shù)據(jù),能否有充分證據(jù)判斷愛好羽毛球運(yùn)動與性別有關(guān)?若有,有多大把握?
| 0.500 | 0.100 | 0.050 | 0.010 |
| 0.455 | 2.706 | 3.841 | 6.635 |
附:
![]()
【答案】(1)
;(2)沒有充分證據(jù)判斷愛好羽毛球運(yùn)動與性別有關(guān).
【解析】【試題分析】(1)先求出隨機(jī)變量
的概率
,
,
及分布列,再運(yùn)用隨機(jī)變量的數(shù)學(xué)期望公式及方差計(jì)算公式求解;(2)先借助22列聯(lián)表中的數(shù)據(jù),運(yùn)用卡方計(jì)算公式![]()
算出
,再與參數(shù)表進(jìn)比對,從而做出判斷:
解:(1)任一學(xué)生愛好羽毛球的概率為
,故
.
; ![]()
; ![]()
的分布列為
| 0 | 1 | 2 | 3 |
|
|
|
|
|
![]()
(2) ![]()
故沒有充分證據(jù)判斷愛好羽毛球運(yùn)動與性別有關(guān).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市化工廠三個(gè)車間共有工人1 000名,各車間男、女工人數(shù)如下表:
第一車間 | 第二車間 | 第三車間 | |
女工 | 173 | 100 | y |
男工 | 177 | x | z |
已知在全廠工人中隨機(jī)抽取1名,抽到第二車間男工的可能性是0. 15.
(1)求x的值;
(2)現(xiàn)用分層抽樣的方法在全廠抽取50名工人,問應(yīng)在第三車間抽取多少名?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
在點(diǎn)
處的切線與直線
垂直.(注:
為自然對數(shù)的底數(shù))
(1)求
的值;
(2)若函數(shù)
在區(qū)間
上存在極值,求實(shí)數(shù)
的取值范圍;
(3)求證:當(dāng)
時(shí),
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左焦點(diǎn)為
,右頂點(diǎn)為
,上頂點(diǎn)為
,過
、
、
三點(diǎn)的圓
的圓心坐標(biāo)為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線
(
為常數(shù),
)與橢圓
交于不同的兩點(diǎn)
和
.
(。┊(dāng)直線
過
,且
時(shí),求直線
的方程;
(ⅱ)當(dāng)坐標(biāo)原點(diǎn)
到直線
的距離為
,且
面積為
時(shí),求直線
的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求曲線
在點(diǎn)
處的切線方程;
(2)若關(guān)于
的不等式
恒成立,求整數(shù)
的最小值;
(3)若正實(shí)數(shù)
滿足
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在高中學(xué)習(xí)過程中,同學(xué)們經(jīng)常這樣說:“如果物理成績好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問題.”某班針對“高中生物理學(xué)習(xí)對數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績與數(shù)學(xué)成績具有線性相關(guān)關(guān)系的結(jié)論.現(xiàn)從該班隨機(jī)抽取5名學(xué)生在一次考試中的物理和數(shù)學(xué)成績,如下表:
編號 成績 | 1 | 2 | 3 | 4 | 5 |
物理( | 90 | 85 | 74 | 68 | 63 |
數(shù)學(xué)( | 130 | 125 | 110 | 95 | 90 |
(1)求數(shù)學(xué)成績
關(guān)于物理成績
的線性回歸方程
(
精確到
),若某位學(xué)生的物理成績?yōu)?0分,預(yù)測他的數(shù)學(xué)成績;
(2)要從抽取的五位學(xué)生中隨機(jī)選出三位參加一項(xiàng)知識競賽,以
表示選中的學(xué)生的數(shù)學(xué)成績高于100分的人數(shù),求隨機(jī)變量
的分布列及數(shù)學(xué)期望.
(參數(shù)公式:
,
.)
參考數(shù)據(jù):
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的方程為
,雙曲線
的一條漸近線與
軸所成的夾角為
,且雙曲線的焦距為
.
![]()
(1)求橢圓
的方程;
(2)設(shè)
分別為橢圓
的左,右焦點(diǎn),過
作直線
(與
軸不重合)交橢圓于
,
兩點(diǎn),線段
的中點(diǎn)為
,記直線
的斜率為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察圖中各正方形圖案,每條邊上有an個(gè)圓點(diǎn),第an個(gè)圖案中圓點(diǎn)的個(gè)數(shù)是an,按此規(guī)律推斷出所有圓點(diǎn)總和Sn與n的關(guān)系式為( 。
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為
(θ為參數(shù)),直線l經(jīng)過定點(diǎn)P(2,3),傾斜角為
.
(Ⅰ)寫出直線l的參數(shù)方程和圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA|·|PB|的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com