分析 先求出p,q為真時(shí)的a的范圍,如果“p且q”為真命題,“p,q”也為真命題,則“p或q”為假命題.,“p,q”都假,即可求解.
解答 解:對(duì)于命題p:由a2x2-ax-2=0在[-1,1]上有解,
當(dāng)a=0時(shí),不符合題意;
當(dāng)a≠0時(shí),方程可化為:(ax-2)(ax+1)=0,
解得:x=$\frac{2}{a}$,或x=-$\frac{1}{a}$,
∵x∈[-1,1],
∴-1≤$\frac{2}{a}$≤1或-1≤-$\frac{1}{a}$≤1,
解得:a≥2或a≤-2
對(duì)于命題q:由只有一個(gè)實(shí)數(shù)x滿足不等式x2+2ax+2a≤0
得拋物線y=x2+2ax+2a與x軸只有一個(gè)交點(diǎn),
∴△=4a2-8a=0
∴a=0或a=2
(1)若“p且q”是真命題,則a=2,
(2)若“p或q”是假命題,則-2<a<2且a≠0.
點(diǎn)評(píng) 由簡(jiǎn)單命題和邏輯連接詞構(gòu)成的復(fù)合命題的真假可以用真值表來(lái)判斷,反之根據(jù)復(fù)合命題的真假也可以判斷簡(jiǎn)單命題的真假.假若p且q真,則p 真,q也真;若p或q真,則p,q至少有一個(gè)真;若p且q假,則p,q都假,本題屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 所有的實(shí)數(shù)x都能使x+$\frac{1}{x}$≥2成立 | |
| B. | 存在一個(gè)實(shí)數(shù)x使不等式x2-2x+3<0成立 | |
| C. | 如果x、y 是實(shí)數(shù),那么“xy>0”是“|x+y|=|x|+|y|”的充分但不必要條件 | |
| D. | 命題甲:“a、b、c”成等差數(shù)列”是命題乙:“$\frac{a}+\frac{c}$=2”的充要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0 | B. | x2y+y2z+z2x | C. | x2+y2+z2 | D. | 3xyz |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com