分析 由于不等式ax2+bx+c>0的解集為(-3,2),可得:-3,2是一元二次方程ax2+bx+c=0的兩個實數(shù)根,且a<0.利用根與系數(shù)的關(guān)系解不等式cx2-bx+a>0即可.
解答 解:∵不等式ax2+bx+c>0的解集為(-3,2),
∴-3,2是一元二次方程ax2+bx+c=0的兩個實數(shù)根,且a<0.
∴-3+2=-$\frac{a}$=-1,-3•2=$\frac{c}{a}$=-6.
∴不等式cx2-bx+a>0化為$\frac{c}{a}$x2-$\frac{a}$x+1<0,
∴-6x2-x+1<0,即:6x2+x-1>0,
解得:x>$\frac{1}{3}$或x<-$\frac{1}{2}$;
∴不等式cx2-bx+a>0的解集是:{x|x>$\frac{1}{3}$或x<-$\frac{1}{2}$}.
點評 本題考查了一元二次不等式的解法、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力和計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{{x}^{2}+5}$+$\frac{1}{\sqrt{{x}^{2}+5}}$≥2 | B. | x3+x+1≥ex | C. | ln(x+1)≤x | D. | 1-$\frac{1}{2}$x2≤cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{x+2}{x-1}$≤0 | B. | $\left\{\begin{array}{l}{x+2≤0}\\{x-1≥0}\end{array}\right.$ | C. | x2+x-2≤0 | D. | |x+1|≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3$\sqrt{2}$ | B. | 3$\sqrt{5}$ | C. | 6 | D. | 沒有最大值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com