【題目】銷售甲乙兩種商品所得利潤(rùn)分別是
(單位:萬(wàn)元)和
(單位:萬(wàn)元),它們與投入資金
(單位:萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式
,
.今將10萬(wàn)元資金投入經(jīng)營(yíng)甲乙兩種商品,其中對(duì)甲種商品投資
(單位:萬(wàn)元).
(1)試建立總利潤(rùn)
(單位:萬(wàn)元)關(guān)于
的函數(shù)關(guān)系式,并寫出定義域;
(2)如何投資經(jīng)營(yíng)甲乙兩種商品,才能使得總利潤(rùn)最大,并求出最大總利潤(rùn).
【答案】(1)
,定義域?yàn)?/span>
;(2)甲商品投入
萬(wàn)元,乙商品投入
萬(wàn)元時(shí),總利潤(rùn)最大為
萬(wàn)元.
【解析】
(1)根據(jù)題意,可以求出對(duì)乙種商品投資金額,最后寫出函數(shù)的關(guān)系式及定義域;
(2)令
,根據(jù)二次函數(shù)的單調(diào)性求出最大值即可.
(1)因?yàn)?/span>10萬(wàn)元資金投入經(jīng)營(yíng)甲乙兩種商品,對(duì)甲種商品投資
(單位:萬(wàn)元),所以對(duì)乙兩種商品投資
(單位:萬(wàn)元),于是有
,定義域?yàn)?/span>
;
(2)令
,
因?yàn)槎x域?yàn)?/span>
,所以
,
所以![]()
![]()
當(dāng)
時(shí),函數(shù)
為單調(diào)遞增函數(shù);
當(dāng)
時(shí),函數(shù)
為單調(diào)遞減函數(shù).
所以當(dāng)
時(shí),即
時(shí),總利潤(rùn)最大為
萬(wàn)元.
即甲商品投入
萬(wàn)元,乙商品投入
萬(wàn)元時(shí),總利潤(rùn)最大為
萬(wàn)元.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐
中,底面
是邊長(zhǎng)為
的菱形,側(cè)面
底面
,
,
,
是
中點(diǎn),點(diǎn)
在側(cè)棱
上.
![]()
(Ⅰ)求證:
;
(Ⅱ)若
是
中點(diǎn),求二面角
的余弦值;
(Ⅲ)是否存在
,使
平面
?若存在,求出
的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成
兩組,每組100只,其中
組小鼠給服甲離子溶液,
組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過(guò)一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:
![]()
記
為事件:“乙離子殘留在體內(nèi)的百分比不低于
”,根據(jù)直方圖得到
的估計(jì)值為
.
(1)求乙離子殘留百分比直方圖中
的值;
(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓![]()
的離心率為
,且過(guò)點(diǎn)
,直線
交橢圓
于不同的兩點(diǎn)
,設(shè)線段
的中點(diǎn)為
.
![]()
(1)求橢圓
的方程;
(2)當(dāng)
的面積為
(其中
為坐標(biāo)原點(diǎn))且
時(shí),試問(wèn):在坐標(biāo)平面上是否存在兩個(gè)定點(diǎn)
,使得當(dāng)直線
運(yùn)動(dòng)時(shí),
為定值?若存在,求出點(diǎn)
的坐標(biāo)和定值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)
,
兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),
產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,
產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,(注:利潤(rùn)與投資單位:萬(wàn)元)
![]()
(1)分別將
,
兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系,并寫出它們的函數(shù)關(guān)系式;
(2)該企業(yè)已籌集到10萬(wàn)元資金,全部投入到
,
兩種產(chǎn)品的生產(chǎn),怎樣分配資金,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)約為多少萬(wàn)元(精確到1萬(wàn)元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的圖象為不間斷的曲線,定義域?yàn)?/span>
,規(guī)定:
①如果對(duì)于任意
,
都有
,則稱函數(shù)
是凹函數(shù).
②如果對(duì)于任意
,
都有
,則稱函數(shù)
是凸函數(shù).
(1)若函數(shù)
(
且
)是凹函數(shù),試寫出實(shí)數(shù)
的取值范圍;(直接寫出結(jié)果,無(wú)需證明);
(2)判斷函數(shù)
是凹函數(shù)還是凸函數(shù),并加以證明;
(3)若對(duì)任意的
且
,
,試證明存在
,使
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
(
為實(shí)數(shù)).
(1)當(dāng)
時(shí),求函數(shù)
的圖象在
處的切線方程;
(2)求
在區(qū)間
上的最小值;
(3)若存在兩個(gè)不等實(shí)數(shù)
,使方程
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(x+2),g(x)=loga(2﹣x)(a>0,a≠1).
(1)求函數(shù)f(x)﹣g(x)的定義域;
(2)判斷f(x)﹣g(x)的奇偶性并證明;
(3)求f(x)﹣g(x)>0中x取值范圍,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,橢圓
的離心率為
,直線
被橢圓
截得的線段長(zhǎng)為
.
(1)求橢圓
的方程;
(2)過(guò)原點(diǎn)的直線與橢圓
交于
兩點(diǎn)(
不是橢圓
的頂點(diǎn)),點(diǎn)
在橢圓
上,且
,直線
與
軸
軸分別交于
兩點(diǎn).
①設(shè)直線
斜率分別為
,證明存在常數(shù)
使得
,并求出
的值;
②求
面積的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com