【題目】已知關(guān)于
的方程
的兩個根分別為
其中
,則
的取值范圍是( )
A.
B.
C.
D. ![]()
【答案】A
【解析】設(shè)
,則
是
的零點,
,
即
,作出平面區(qū)域如圖,
表示區(qū)域內(nèi)的點
與
連線的斜率,
由圖象可知,當(dāng)過
的直線平行于
時,斜率最小為
,過
的直線與
軸平行時,斜率最大為
,故選A.
【方法點晴】本題主要考查一元二次方程根的分布,數(shù)學(xué)的轉(zhuǎn)化與劃歸思想以及線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬難題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移(轉(zhuǎn))、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移(旋轉(zhuǎn))變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.解答本題的關(guān)鍵有兩點,一是將根的分布問題轉(zhuǎn)換為不等式問題,二是將不等式問題轉(zhuǎn)化為線性規(guī)劃問題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的各項均為正數(shù),其前n項和為Sn , 且滿足a1=1,an+1=2
+1,n∈N* .
(1)求a2的值;
(2)求數(shù)列{an}的通項公式;
(3)是否存在正整數(shù)k,使ak , S2k﹣1 , a4k成等比數(shù)列?若存在,求k的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入
萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從
開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]
(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司投入
萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 | 1 | 2 | 3 | 4 | 5 |
銷售收益 | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示,
與
之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出
關(guān)于
的回歸直線方程.
![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,AB=BC=BB1,
,D為AC上的點,B1C∥平面A1BD;
(1)求證:BD⊥平面
;
(2)若
且
,求三棱錐A-BCB1的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體
的棱長為
,
為
的中點,
為線段
上的動點,過點
,
,
的平面截該正方體所得的截面為
,則下列命題正確的是__________(寫出所有正確命題的編號).
![]()
①當(dāng)
時,
為四邊形;②當(dāng)
時,
為等腰梯形;
③當(dāng)
時,
與
的交點
滿足
;
④當(dāng)
時,
為五邊形;
⑤當(dāng)
時,
的面積為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
過點
,且離心率為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)直線
與橢圓
交于
、
兩點,以
為對角線作正方形
,記直線
與
軸的交點為
,問
、
兩點間距離是否為定值?如果是,求出定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=a﹣bcos(2x+
)(b>0)的最大值為3,最小值為﹣1.
(1)求a,b的值;
(2)當(dāng)求x∈[
,
π]時,函數(shù)g(x)=4asin(bx﹣
)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點.
(1)判定AE與PD是否垂直,并說明理由.
(2)設(shè)AB=2,若H為PD上的動點,若△AHE面積的最小值為
, 求四棱錐P﹣ABCD的體積.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com