【題目】已知拋物線
(
)與雙曲線
(
,
)有相同的焦點
,點
是兩條曲線的一個交點,且
軸,則該雙曲線經(jīng)過一、三象限的漸近線的傾斜角所在的區(qū)間是( )
A.
B.
C.
D. ![]()
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:
=2px(p>0)的準線方程為x=-
,F為拋物線的焦點
(I)求拋物線C的方程;
(II)若P是拋物線C上一點,點A的坐標為(
,2),求
的最小值;
(III)若過點F且斜率為1的直線與拋物線C交于M,N兩點,求線段MN的中點坐標。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}中的項按順序可以排成如圖的形式,第一行1項,排a1;第二行2項,從左到右分別排a2,a3;第三行3項,……依此類推,設數(shù)列{an}的前n項和為Sn,則滿足Sn>2019的最小正整數(shù)n的值為()
![]()
A. 20B. 21C. 26D. 27
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市規(guī)定,高中學生在校期間須參加不少于80小時的社區(qū)服務才合格.某校隨機抽取20位學生參加社區(qū)服務的數(shù)據(jù),按時間段
(單位:小時)進行統(tǒng)計,其頻率分布直方圖如圖所示.
![]()
(1)求抽取的20人中,參加社區(qū)服務時間不少于90小時的學生人數(shù);
(2)從參加社區(qū)服務時間不少于90小時的學生中任意選取2人,求所選學生的參加社區(qū)服務時間在同一時間段內的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量
(噸)與相應的生產(chǎn)能耗
(噸)標準煤的幾組對照數(shù)據(jù)
|
|
|
|
|
|
|
|
|
|
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關于
的線性回歸方程
;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤.試根據(jù)(1)求出的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?
參考公式:![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉變.近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月A,B兩種移動支付方式的使用情況,從全校學生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:
支付方式 | (0,1000] | (1000,2000] | 大于2000 |
僅使用A | 18人 | 9人 | 3人 |
僅使用B | 10人 | 14人 | 1人 |
(Ⅰ)從全校學生中隨機抽取1人,估計該學生上個月A,B兩種支付方式都使用的概率;
(Ⅱ)從樣本僅使用A和僅使用B的學生中各隨機抽取1人,以X表示這2人中上個月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學期望;
(Ⅲ)已知上個月樣本學生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用A的學生中,隨機抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結果,能否認為樣本僅使用A的學生中本月支付金額大于2000元的人數(shù)有變化?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,
在點
處的切線方程為
.
(1)求
的解析式;
(2)求
的單調區(qū)間;
(3)若函數(shù)
在定義域內恒有
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某闖關游戲規(guī)劃是:先后擲兩枚骰子,將此試驗重復
輪,第
輪的點數(shù)分別記為
,如果點數(shù)滿足
,則認為第
輪闖關成功,否則進行下一輪投擲,直到闖關成功,游戲結束.
(1)求第1輪闖關成功的概率;
(2)如果第
輪闖關成功所獲的獎金(單位:元)
,求某人闖關獲得獎金不超過2500元的概率;
(3)如果游戲只進行到第4輪,第4輪后無論游戲成功與否,都終止游戲,記進行的輪數(shù)為隨機變量
,求
的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省有關部門要求各中小學要把“每天鍛煉一小時”寫入課程表,為了響應這一號召,某校圍繞著“你最喜歡的體育活動項目是什么?(只寫一項”的問題,對在校學生進行了隨機抽樣調查,從而得到一組數(shù)據(jù).圖(1)是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計圖.請結合統(tǒng)計圖回答下列問題:
![]()
![]()
(1)該校對多少名學生進行了抽樣調查?
(2)本次抽樣調查中,最喜歡籃球活動的有多少人?占被調查人數(shù)的百分比是多少?
(3)若該校九年級共有200名學生,圖(2)是根據(jù)各年級學生人數(shù)占全校學生總人數(shù)的百分比繪制的扇形統(tǒng)計圖,請你估計全校學生中最喜歡跳繩活動的人數(shù)為多少.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com