【題目】已知拋物線C:
=2px(p>0)的準(zhǔn)線方程為x=-
,F為拋物線的焦點(diǎn)
(I)求拋物線C的方程;
(II)若P是拋物線C上一點(diǎn),點(diǎn)A的坐標(biāo)為(
,2),求
的最小值;
(III)若過點(diǎn)F且斜率為1的直線與拋物線C交于M,N兩點(diǎn),求線段MN的中點(diǎn)坐標(biāo)。
【答案】(Ⅰ)
(II)4(III)線段MN中點(diǎn)的坐標(biāo)為(
)
【解析】
(I)由準(zhǔn)線方程
求得
,可得拋物線標(biāo)準(zhǔn)方程.
(II)把
轉(zhuǎn)化為
到準(zhǔn)線的距離
,可得
三點(diǎn)共線時(shí)得所求最小值.
(III)寫出直線
方程,代入拋物線方程后用韋達(dá)定理可得中點(diǎn)坐標(biāo).
(I)∵準(zhǔn)線方程x=-
,得
=1,
∴拋物線C的方程為![]()
(II)過點(diǎn)P作準(zhǔn)線的垂線,垂直為B,則
=![]()
要使
+
的最小,則P,A,B三點(diǎn)共線
此時(shí)
+
=
+
=4·
(III)直線MN的方程為y=x-
·
設(shè)M(
),N(
),把y=x-
代入拋物線方程
,得
-3x+
=0
∵△=9-4×1×
=8>0
∴
+
=3,
=![]()
線段MN中點(diǎn)的橫坐標(biāo)為
,縱坐標(biāo)為![]()
線段MN中點(diǎn)的坐標(biāo)為(
)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了
月
日至
月
日的每天晝夜溫差與實(shí)驗(yàn)室每天每
顆種子中的發(fā)芽數(shù),得到如下資料:
日期 |
|
|
|
|
|
溫差 |
|
|
|
|
|
發(fā)芽數(shù) |
|
|
|
|
|
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取
組,用剩下的
組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的
組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的
組數(shù)據(jù)恰好是不相鄰
天數(shù)據(jù)的概率;
(2)若選取的是
月
日與
月
日的兩組數(shù)據(jù),請(qǐng)根據(jù)
月
日至
月
日的數(shù)據(jù),求出
關(guān)于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過
顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成
兩組,每組100只,其中
組小鼠給服甲離子溶液,
組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:
![]()
記
為事件:“乙離子殘留在體內(nèi)的百分比不低于
”,根據(jù)直方圖得到
的估計(jì)值為
.
(1)求乙離子殘留百分比直方圖中
的值;
(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
的參數(shù)方程為
(
為參數(shù)),曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,且曲線
的極坐標(biāo)方程為
.
(1)若直線
的斜率為
,判斷直線
與曲線
的位置關(guān)系;
(2)求
與
交點(diǎn)的極坐標(biāo)(
,
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知有限集
. 如果
中元素
滿足
,就稱
為“復(fù)活集”,給出下列結(jié)論:
①集合
是“復(fù)活集”;
②若
,且
是“復(fù)活集”,則
;
③若
,則
不可能是“復(fù)活集”;
④若
,則“復(fù)活集”
有且只有一個(gè),且
.
其中正確的結(jié)論是____________.(填上你認(rèn)為所有正確的結(jié)論序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,![]()
(1)求證
在
上遞增;
(2)若
在
上的值域是
,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)
在
上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求函數(shù)
的單調(diào)區(qū)間;
(2)若
,則當(dāng)
時(shí),函數(shù)
的圖象是否總在直線
上方?請(qǐng)寫出判斷過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(1)求曲線
和直線
在該直角坐標(biāo)系下的普通方程;
(2)動(dòng)點(diǎn)
在曲線
上,動(dòng)點(diǎn)
在直線
上,定點(diǎn)
的坐標(biāo)為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
(
)與雙曲線
(
,
)有相同的焦點(diǎn)
,點(diǎn)
是兩條曲線的一個(gè)交點(diǎn),且
軸,則該雙曲線經(jīng)過一、三象限的漸近線的傾斜角所在的區(qū)間是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com