【題目】國內(nèi)某汽車品牌一個月內(nèi)被消費者投訴的次數(shù)用
表示,據(jù)統(tǒng)計,隨機(jī)變量
的概率分布如下:
|
|
|
|
|
|
|
|
|
|
(1)求
的值;
(2)假設(shè)一月與二月被消費者投訴的次數(shù)互不影響,求該汽車品牌在這兩個月內(nèi)被消費者投訴
次的概率.
【答案】(1)a=0.2,(2)0.17.
【解析】試題分析:(1)根據(jù)分布列的性質(zhì)可得0.1+0.3+2a+a=1(2)根據(jù)題意問題將分為兩類“兩個月內(nèi)有一個月被投訴2次,另外一個月被投訴0次”, “兩個月內(nèi)每月均被投訴1次”然后根據(jù)投訴概率列式解答
試題解析:
解:(1)由概率分布的性質(zhì)有0.1+0.3+2a+a=1,解答a=0.2,
所以X的概率分布為
X | 0 | 1 | 2 | 3 |
P | 0.1 | 0.3 | 0.4 | 0.2 |
(2)設(shè)事件A表示“兩個月內(nèi)共被投訴2次”,事件
表示“兩個月內(nèi)有一個月被投訴2次,另外一個月被投訴0次”,事件
表示“兩個月內(nèi)每月均被投訴1次”
則由事件的獨立性得
,
所以
.
故該企業(yè)在這兩個月內(nèi)共被消費者投訴2次的概率為0.17.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點
為極點,
軸的正半軸為極軸,與直角坐標(biāo)系
取相同的單位長度建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)化曲線
的方程為普通方程,并說明它們分別表示什么曲線;
(2)設(shè)曲線
與
軸的一個交點的坐標(biāo)為
,經(jīng)過點
作斜率為1的直線,
交曲線
于
兩點,求線段
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)設(shè)
.
①若
,曲線
在
處的切線過點
,求
的值;
②若
,求
在區(qū)間
上的最大值.
(2)設(shè)
在
,
兩處取得極值,求證:
,
不同時成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市要建成宜商、宜居的國際化新城,該城市的東城區(qū)、西城區(qū)分別引進(jìn)8個廠家,現(xiàn)對兩個區(qū)域的16個廠家進(jìn)行評估,綜合得分情況如莖葉圖所示.
![]()
(1)根據(jù)莖葉圖判斷哪個區(qū)域廠家的平均分較高;
(2)規(guī)定85分以上(含85分)為優(yōu)秀廠家,若從該兩個區(qū)域各選一個優(yōu)秀廠家,求得分差距不超過5分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中有
個黃色、
個白色的乒乓球,做不放回抽樣,每次任取
個球,取
次,則關(guān)于事件“直到第二次才取到黃色球”與事件“第一次取到白球的情況下,第二次恰好取得黃球”的概率說法正確的是( )
A. 事件“直到第二次才取到黃色球”與事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率都等于![]()
B. 事件“直到第二次才取到黃色球”與事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率都等于![]()
C. 事件“直到第二次才取到黃色球”的概率等于
,事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率等于![]()
D. 事件“直到第二次才取到黃色球”的概率等于
,事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率等于![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點為直角坐標(biāo)系
的原點,極軸為
軸的正半軸,兩種坐標(biāo)系中的長度單位相同,圓
的直角坐標(biāo)方程為
,直線
的參數(shù)方程為
(
為參數(shù)),射線
的極坐標(biāo)方程為
.
(1)求圓
和直線
的極坐標(biāo)方程;
(2)已知射線
與圓
的交點為
,與直線
的交點為
,求線段
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的焦點在
軸上,且橢圓
的焦距為2.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)過點
的直線
與橢圓
交于兩點
,過
作
軸且與橢圓
交于另一點
,
為橢圓
的右焦點,求證:三點
在同一條直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年“一帶一路”國際合作高峰論壇于今年5月14日至15日在北京舉行.為高標(biāo)準(zhǔn)完成高峰論壇會議期間的志愿服務(wù)工作,將從27所北京高校招募大學(xué)生志愿者,某調(diào)查機(jī)構(gòu)從是否有意愿做志愿者在某高校訪問了80人,經(jīng)過統(tǒng)計,得到如下丟失數(shù)據(jù)的列聯(lián)表:(
,表示丟失的數(shù)據(jù))
無意愿 | 有意愿 | 總計 | |
男 |
|
| 40 |
女 | 5 |
|
|
總計 | 25 |
| 80 |
(1)求出
的值,并判斷:能否有99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān);
(2)若表中無意愿做志愿者的5個女同學(xué)中,3個是大學(xué)三年級同學(xué),2個是大學(xué)四年級同學(xué).現(xiàn)從這5個同學(xué)中隨機(jī)選2同學(xué)進(jìn)行進(jìn)一步調(diào)查,求這2個同學(xué)是同年級的概率.
附參考公式及數(shù)據(jù):
,其中
.
| 0.40 | 0.25 | 0.10 | 0.010 | 0.005 | 0.001 |
| 0.708 | 1.323 | 2.706 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線
的極坐標(biāo)方程是
,以極點為原點,極軸為
軸的正半軸建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)).
(Ⅰ)寫出直線
的普通方程與曲線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線
經(jīng)過伸縮變換
得到曲線
,若點
,直線
與
交與
,
,求
,
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com