【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,與直角坐標(biāo)系
取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)化曲線
的方程為普通方程,并說(shuō)明它們分別表示什么曲線;
(2)設(shè)曲線
與
軸的一個(gè)交點(diǎn)的坐標(biāo)為
,經(jīng)過(guò)點(diǎn)
作斜率為1的直線,
交曲線
于
兩點(diǎn),求線段
的長(zhǎng).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
是
的單調(diào)遞增函數(shù),求實(shí)數(shù)
的取值范圍;
(2)當(dāng)
時(shí),求證:函數(shù)
有最小值,并求函數(shù)
最小值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,已知曲線
的方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
(
).
(1)求曲線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)曲線
上有3個(gè)點(diǎn)到曲線
的距離等于1,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>
的函數(shù)
是奇函數(shù).
(1)求
的值;
(2)判斷函數(shù)
的單調(diào)性并證明;
(3)若對(duì)任意的
,不等式
恒成立,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“累積凈化量
”是空氣凈化器質(zhì)量的一個(gè)重要衡量指標(biāo),它是指空氣凈化從開(kāi)始使用到凈化效率為50%時(shí)對(duì)顆粒物的累積凈化量,以克表示,根據(jù)
《空氣凈化器》國(guó)家標(biāo)準(zhǔn),對(duì)空氣凈化器的累計(jì)凈化量
有如下等級(jí)劃分:
累積凈化量(克) |
|
|
| 12以上 |
等級(jí) |
|
|
|
|
為了了解一批空氣凈化器(共5000臺(tái))的質(zhì)量,隨機(jī)抽取
臺(tái)機(jī)器作為樣本進(jìn)行估計(jì),已知這
臺(tái)機(jī)器的累積凈化量都分布在區(qū)間
中,按照
、
、
、
、
均勻分組,其中累積凈化量在
的所有數(shù)據(jù)有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:
![]()
(1)求
的值及頻率分布直方圖中
的值;
(2)以樣本估計(jì)總體,試估計(jì)這批空氣凈化器(共5000臺(tái))中等級(jí)為
的空氣凈化器有多少臺(tái)?
(3)從累積凈化量在
的樣本中隨機(jī)抽取2臺(tái),求恰好有1臺(tái)等級(jí)為
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù)
滿足
.
(1)求函數(shù)
的解析式;
(2)若函數(shù)
,是否存在實(shí)數(shù)
使得
的最小值為0?若存在,求出
的值;若不存在,說(shuō)明理由;
(3)若函數(shù)
,是否存在實(shí)數(shù)
,使函數(shù)
在
上的值域?yàn)?/span>
?若存在,求出實(shí)數(shù)
的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
![]()
(Ⅰ)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(Ⅱ)能否有
的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提供更好的調(diào)查方法來(lái)估計(jì)該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說(shuō)明理由.
附: ![]()
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
在
處的切線經(jīng)過(guò)點(diǎn)![]()
(1)討論函數(shù)
的單調(diào)性;
(2)若不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)內(nèi)某汽車(chē)品牌一個(gè)月內(nèi)被消費(fèi)者投訴的次數(shù)用
表示,據(jù)統(tǒng)計(jì),隨機(jī)變量
的概率分布如下:
|
|
|
|
|
|
|
|
|
|
(1)求
的值;
(2)假設(shè)一月與二月被消費(fèi)者投訴的次數(shù)互不影響,求該汽車(chē)品牌在這兩個(gè)月內(nèi)被消費(fèi)者投訴
次的概率.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com