【題目】如圖1,在梯形
中,
,點(diǎn)
在線段
上,且滿(mǎn)足
,將
沿
翻折,使翻折后的二面角
的余弦值為
,如圖2.
![]()
(1)求證:
;
(2)求直線
與平面
所成角的正弦值.
【答案】(1)證明見(jiàn)解析;(2)![]()
【解析】
(1)先根據(jù)菱形的性質(zhì)證得線線垂直,再根據(jù)線面垂直的判定定理證得線面垂直,最后根據(jù)線面垂直的性質(zhì)定理證得線線垂直;
(2)先通過(guò)作輔助線找到所求的線面角及二面角
的平面角,再通過(guò)解三角形求相關(guān)線段的長(zhǎng)度,即可得線面角的正弦值,也可根據(jù)垂直關(guān)系建立空間直角坐標(biāo)系進(jìn)行求解.
解:(1)在梯形
中,
連接
,
記
.
由題意易得
,
所以四邊形
是平行四邊形,
又
,
所以四邊形
是菱形,
所以
,
所以
.
又
,
平面
,
所以
平面
,又
平面
,
所以
.
(2)因?yàn)?/span>
平面
平面
,
所以平面
平面
.
過(guò)點(diǎn)
作
交
的延長(zhǎng)線于點(diǎn)
,
如圖所示,
因?yàn)槠矫?/span>
平面
,
所以
平面
.
延長(zhǎng)
交于點(diǎn)
,連接
,
則
為直線
與平面
所成的角.
由
,
得二面角
的平面角為
,
則
,
所以
.
由四邊形
是菱形,
且易得
,
得
為等邊三角形,
所以
,
所以
.
在
中,易知
為
的中位線,
,
所以
,
所以
,
即直線
與平面
所成角的正弦值為
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】考前回歸課本復(fù)習(xí)過(guò)程中,一數(shù)學(xué)老師在黑板上寫(xiě)了下面四個(gè)函數(shù):①
;②
;③
;④
.然后說(shuō)了四句話:第一句:“該函數(shù)定義域?yàn)?/span>
,還是奇函數(shù)”.第二句:“該函數(shù)為偶函數(shù),值域不是
”.第三句:“該函數(shù)定義域?yàn)?/span>
,還是單調(diào)函數(shù)”.第四句:“該函數(shù)的圖象有對(duì)稱(chēng)軸,值域是
”,若老師的每一句話只說(shuō)對(duì)了一半,則這四個(gè)函數(shù)中符合老師說(shuō)的所有函數(shù)的編號(hào)為______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖四棱錐
中,底面
為菱形,
,
,
平面
,E,M分別是BC,PD中點(diǎn),點(diǎn)F在棱PC上移動(dòng).
![]()
(1)證明無(wú)論點(diǎn)F在PC上如何移動(dòng),都有平面
平面
;
(2)當(dāng)直線AF與平面PCD所成的角最大時(shí),求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(t為參數(shù),
).在以坐標(biāo)原點(diǎn)為極點(diǎn)、x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為
.
(1)若點(diǎn)
在直線l上,求線l的直角坐標(biāo)方程和曲線C的直角坐標(biāo)方程;
(2)已知
,點(diǎn)P在直線l上,點(diǎn)Q在曲線C上,且
的最小值為
,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩同學(xué)參加數(shù)學(xué)競(jìng)賽培訓(xùn),在培訓(xùn)期間,他們參加了8次測(cè)驗(yàn),成績(jī)(單位:分)記錄如下:
A 71 62 72 76 63 70 85 83
B 73 84 75 73 7
8
76 85
B同學(xué)的成績(jī)不慎被墨跡污染(
,
分別用m,n表示).
(1)用莖葉圖表示這兩組數(shù)據(jù),現(xiàn)從A、B兩同學(xué)中選派一人去參加數(shù)學(xué)競(jìng)賽,你認(rèn)為選派誰(shuí)更好?請(qǐng)說(shuō)明理由(不用計(jì)算);
(2)若B同學(xué)的平均分為78,方差
,求m,n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定點(diǎn)S( -2,0) ,T(2,0),動(dòng)點(diǎn)P為平面上一個(gè)動(dòng)點(diǎn),且直線SP、TP的斜率之積為
.
(1)求動(dòng)點(diǎn)P的軌跡E的方程;
(2)設(shè)點(diǎn)B為軌跡E與y軸正半軸的交點(diǎn),是否存在直線l,使得l交軌跡E于M,N兩點(diǎn),且F(1,0)恰是△BMN的垂心?若存在,求l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)集
,其中
,且
,若對(duì)
,
與
兩數(shù)中至少有一個(gè)屬于
,則稱(chēng)數(shù)集
具有性質(zhì)
.
(1)分別判斷數(shù)集
與數(shù)集
是否具有性質(zhì)
,說(shuō)明理由;
(2)已知數(shù)集
具有性質(zhì)
,判斷數(shù)列
,
,…,
是否為等差數(shù)列,若是等差數(shù)列,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)F2是雙曲線
的右焦點(diǎn),動(dòng)點(diǎn)A在雙曲線左支上,直線l1:tx﹣y+t﹣2=0與直線l2:x+ty+2t﹣1=0的交點(diǎn)為B,則|AB|+|AF2|的最小值為( )
A.8B.
C.9D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班級(jí)共有50名同學(xué)(男女各占一半),為弘揚(yáng)傳統(tǒng)文化,班委組織了“古詩(shī)詞男女對(duì)抗賽”,將同學(xué)隨機(jī)分成25組,每組男女同學(xué)各一名,每名同學(xué)均回答同樣的五個(gè)不同問(wèn)題,答對(duì)一題得一分,答錯(cuò)或不答得零分,總分5分為滿(mǎn)分.最后25組同學(xué)得分如下表:
組別號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
男同學(xué)得分 | 5 | 4 | 5 | 5 | 4 | 5 | 5 | 4 | 4 | 4 | 5 | 5 | 4 |
女同學(xué)得分 | 4 | 3 | 4 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 3 | 5 |
分差 | 1 | 1 | 1 | 0 | -1 | 0 | 1 | -1 | -1 | -1 | 0 | 2 | -1 |
組別號(hào) | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
男同學(xué)得分 | 4 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 4 | 3 | 3 | |
女同學(xué)得分 | 5 | 3 | 4 | 5 | 4 | 3 | 5 | 5 | 3 | 4 | 5 | 5 | |
分差 | -1 | 0 | 0 | -1 | 0 | 1 | 0 | 0 | 2 | 0 | -2 | -2 | |
(I)完成
列聯(lián)表,并判斷是否有90%的把握認(rèn)為“該次對(duì)抗賽是否得滿(mǎn)分”與“同學(xué)性別”有關(guān);
(Ⅱ)某課題研究小組假設(shè)各組男女同學(xué)分差服從正態(tài)分布
,首先根據(jù)前20組男女同學(xué)的分差確定
和
,然后根據(jù)后面5組同學(xué)的分差來(lái)檢驗(yàn)?zāi)P停瑱z驗(yàn)方法是:記后面5組男女同學(xué)分差與
的差的絕對(duì)值分別為
,若出現(xiàn)下列兩種情況之一,則不接受該模型,否則接受該模型.①存在
;②記滿(mǎn)足
的i的個(gè)數(shù)為k,在服從正態(tài)分布
的總體(個(gè)體數(shù)無(wú)窮大)中任意取5個(gè)個(gè)體,其中落在區(qū)間
內(nèi)的個(gè)體數(shù)大于或等于k的概率為P,
.
試問(wèn)該課題研究小組是否會(huì)接受該模型.
| 0.10 | 0.05 | 0.010 |
| 2.706 | 3.841 | 6.635 |
參考公式和數(shù)據(jù):![]()
,
;若
,有
,
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com