【題目】在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(t為參數(shù),
).在以坐標(biāo)原點(diǎn)為極點(diǎn)、x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為
.
(1)若點(diǎn)
在直線l上,求線l的直角坐標(biāo)方程和曲線C的直角坐標(biāo)方程;
(2)已知
,點(diǎn)P在直線l上,點(diǎn)Q在曲線C上,且
的最小值為
,求a的值.
【答案】(1)直線l的直角坐標(biāo)方程
曲線C的直角坐標(biāo)方程
(2)![]()
【解析】
(1)將直線l的參數(shù)方程,消去參數(shù)整理得到
,再根據(jù)點(diǎn)
直線l上,把點(diǎn)
代入直角坐標(biāo)方程求解.將曲線C的極坐標(biāo)方程,利用二倍角公式轉(zhuǎn)化為
,再將
代入求解.
(2)根據(jù)點(diǎn)P在直線l上,點(diǎn)Q在曲線C上,且
的最小值為
,則直線與曲線相離,聯(lián)立
,由
及已知
,解得a的范圍, 將曲線
轉(zhuǎn)換為參數(shù)方程為
(
為參數(shù)),設(shè)
,由點(diǎn)到直線的距離公式得到
,然后利用正弦函數(shù)的性質(zhì)求解.
(1)因?yàn)橹本l的參數(shù)方程為
(t為參數(shù)),
消去參數(shù)得:
,
整理得:
,
因?yàn)辄c(diǎn)
直線l上,
把點(diǎn)
代入直角坐標(biāo)方程,解得
.
所以直線的直角坐標(biāo)方程為
.
因?yàn)榍C的極坐標(biāo)方程為
.
所以
,
所以
,
因?yàn)?/span>
,
代入上式整理得:
,
所以曲線C直角坐標(biāo)方程為:
.
(2)聯(lián)立
,得
,
由
得:
或
,
又
,∴
.
曲線
的參數(shù)方程為
(
為參數(shù)),
設(shè)
,
所以:![]()
所以當(dāng)
時,
,
解得:
或
,
又
,∴
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司以客戶滿意為出發(fā)點(diǎn),隨機(jī)抽選2000名客戶,以調(diào)查問卷的形式分析影響客戶滿意度的各項(xiàng)因素.每名客戶填寫一個因素,下圖為客戶滿意度分析的帕累托圖.帕累托圖用雙直角坐標(biāo)系表示,左邊縱坐標(biāo)表示頻數(shù),右邊縱坐標(biāo)表示頻率,分析線表示累計(jì)頻率,橫坐標(biāo)表示影響滿意度的各項(xiàng)因素,按影響程度(即頻數(shù))的大小從左到右排列,以下結(jié)論正確的個數(shù)是( ).
![]()
①35.6%的客戶認(rèn)為態(tài)度良好影響他們的滿意度;
②156位客戶認(rèn)為使用禮貌用語影響他們的滿意度;
③最影響客戶滿意度的因素是電話接起快速;
④不超過10%的客戶認(rèn)為工單派發(fā)準(zhǔn)確影響他們的滿意度.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,函數(shù)
在點(diǎn)
處的切線與函數(shù)
相切.
(1)求函數(shù)
的值域;
(2)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐
中,
,
,
,
.有以下結(jié)論:①三棱錐
的表面積為
;②三棱錐
的內(nèi)切球的半徑
;③點(diǎn)
到平面
的距離為
;其中正確的是( )
A.①②B.②③C.①③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
滿足:
,
,現(xiàn)從數(shù)列
的前2020項(xiàng)中隨機(jī)抽取1項(xiàng),則該項(xiàng)不能被3整除的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
.(
為參數(shù))以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)
的極坐標(biāo)為
,直線
的極坐標(biāo)方程為
.
(1)求
的直角坐標(biāo)和 l的直角坐標(biāo)方程;
(2)把曲線
上各點(diǎn)的橫坐標(biāo)伸長為原來的
倍,縱坐標(biāo)伸長為原來的
倍,得到曲線
,
為
上動點(diǎn),求
中點(diǎn)
到直線
距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在梯形
中,
,點(diǎn)
在線段
上,且滿足
,將
沿
翻折,使翻折后的二面角
的余弦值為
,如圖2.
![]()
(1)求證:
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐
的底面ABCD是邊長為3的正方形,
平面ABCD,
,E為PD中點(diǎn),過EB作平面
分別與線段PA、PC交于點(diǎn)M,N,且
,則
________;四邊形EMBN的面積為________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com