【題目】一盒中裝有除顏色外其余均相同的12個小球,從中隨機取出1個球,取出紅球的概率為
,取出黑球的概率為
,取出白球的概率為
,取出綠球的概率為
.求:
(1)取出的1個球是紅球或黑球的概率;
(2)取出的1個球是紅球或黑球或白球的概率.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系
中,設(shè)點
是橢圓
:
上一點,從原點
向圓
:
作兩條切線分別與橢圓
交于點
,
,直線
,
的斜率分別記為
,
.
![]()
(1)求證:
為定值;
(2)求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)確定函數(shù)
在定義域上的單調(diào)性,并寫出詳細過程;
(2)若
在
上恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓錐曲線
:
(
為參數(shù))和定點
,
,
是此圓錐曲線
的左、右焦點.
(1)以原點為極點,以
軸的正半軸為極軸建立極坐標系,求直線
的極坐標方程;
(2)經(jīng)過
且與直線
垂直的直線交此圓錐曲線
于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一個不透明的箱子里裝有5個完全相同的小球,球上分別標有數(shù)字1、2、3、4、5.甲先從箱子中摸出一個小球,記下球上所標數(shù)字后,將該小球放回箱子中搖勻后,乙再從該箱子中摸出一個小球.
(1)若甲、乙兩人誰摸出的球上標的數(shù)字大誰就獲勝(數(shù)字相同為平局),求甲獲勝的概率;
(2)規(guī)定:兩人摸到的球上所標數(shù)字之和小于6,則甲獲勝,否則乙獲勝,這樣規(guī)定公平嗎?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】劉徽(約公元 225 年—295 年)是魏晉時期偉大的數(shù)學家,中國古典數(shù)學理論的奠基人之一,他的杰作《九章算術(shù)注》和《海島算經(jīng)》是中國寶貴的古代數(shù)學遺產(chǎn). 《九章算術(shù)·商功》中有這樣一段話:“斜解立方,得兩壍堵. 斜解壍堵,其一為陽馬,一為鱉臑.” 劉徽注:“此術(shù)臑者,背節(jié)也,或曰半陽馬,其形有似鱉肘,故以名云.” 其實這里所謂的“鱉臑(biē nào)”,就是在對長方體進行分割時所產(chǎn)生的四個面都為直角三角形的三棱錐. 如圖,在三棱錐
中,
垂直于平面
,
垂直于
,且
,則三棱錐
的外接球的球面面積為__________.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,
(
),且曲線
在點
處的切線方程為
.
(1)求實數(shù)
的值及函數(shù)
的最大值;
(2)當
時,記函數(shù)
的最小值為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系
中,曲線C1的參數(shù)方程為
(α為參數(shù)),以原點O為極點,x軸的正半軸為級軸,建立極坐標系,曲線C2的極坐標方程
;
(1)求曲線C1的普通方程和曲線C2的直角坐標方程;
(2)設(shè)P為曲線C1上的動點,求點P到曲線C2上的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線
的焦點為
,拋物線
上存在一點
到焦點
的距離等于
.
(1)求拋物線
的方程;
(2)過點
的直線
與拋物線
相交于
,
兩點(
,
兩點在
軸上方),點
關(guān)于
軸的對稱點為
,且
,求△
的外接圓的方程.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com