【題目】2020年席卷全球的新冠肺炎給世界人民帶來了巨大的災(zāi)難,面對(duì)新冠肺炎,早發(fā)現(xiàn)、早診斷、早隔離、早治療是有效防控疾病蔓延的重要舉措之一.某社區(qū)對(duì)
位居民是否患有新冠肺炎疾病進(jìn)行篩查,先到社區(qū)醫(yī)務(wù)室進(jìn)行口拭子核酸檢測(cè),檢測(cè)結(jié)果成陽(yáng)性者,再到醫(yī)院做進(jìn)一步檢查,己知隨機(jī)一人其口拭子核酸檢測(cè)結(jié)果成陽(yáng)性的概率為
%,且每個(gè)人的口拭子核酸是否呈陽(yáng)性相互獨(dú)立.
(1)假設(shè)該疾病患病的概率是
%,且患病者口拭子核酸呈陽(yáng)性的概率為
%,設(shè)這
位居民中有一位的口拭子核酸檢測(cè)呈陽(yáng)性,求該居民可以確診為新冠肺炎患者的概率;
(2)根據(jù)經(jīng)驗(yàn),口拭子核酸檢測(cè)采用分組檢測(cè)法可有效減少工作量,具體操作如下:將
位居民分成若干組,先取每組居民的口拭子核酸混在一起進(jìn)行檢測(cè),若結(jié)果顯示陰性,則可斷定本組居民沒有患病,不必再檢測(cè);若結(jié)果顯示陽(yáng)性,則說明本組中至少有一位居民患病,需再逐個(gè)進(jìn)行檢測(cè),現(xiàn)有兩個(gè)分組方案:
方案一:將
位居民分成
組,每組
人;
方案二:將
位居民分成
組,每組
人;
試分析哪一個(gè)方案的工作量更少?
(參考數(shù)據(jù):
,
)
【答案】(1)
(2)見解析
【解析】
(1)設(shè)事件
為 “核酸檢測(cè)呈陽(yáng)性”,事件
為“患疾病”,利用條件概率公式求解即可;
(2)設(shè)方案一和方案二中每組的檢測(cè)次數(shù)為
,
,分別求出兩種方案檢測(cè)次數(shù)的分布列,進(jìn)而得出期望,通過比較期望的大小即可得出結(jié)論.
(1)設(shè)事件
為 “核酸檢測(cè)呈陽(yáng)性”,事件
為“患疾病”
由題意可得
,![]()
由條件概率公式
得:![]()
即![]()
故該居民可以確診為新冠肺炎患者的概率為![]()
(2)設(shè)方案一中每組的檢測(cè)次數(shù)為
,則
的取值為![]()
![]()
![]()
所以
的分布列為
|
|
|
|
|
|
所以![]()
即方案一檢測(cè)的總次數(shù)的期望為![]()
設(shè)方案二中每組的檢測(cè)次數(shù)為
,則
的取值為![]()
;![]()
所以
的分布列為
|
|
|
|
|
|
所以![]()
即方案二檢測(cè)的總次數(shù)的期望為![]()
由
,則方案二的工作量更少
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)求直線
的普通方程和曲線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)
為曲線
上的點(diǎn),
,垂足為
,若
的最小值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|3x+2|.
(1)解不等式f(x)<4-|x-1|;
(2)已知m+n=1(m,n>0),若|x-a|-f(x)≤
(a>0)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點(diǎn)O是對(duì)角線AC與BD的交點(diǎn),AB=2,∠BAD=60°,M是PD的中點(diǎn).
(Ⅰ)求證:OM∥平面PAB;
(Ⅱ)平面PBD⊥平面PAC;
(Ⅲ)當(dāng)三棱錐C﹣PBD的體積等于
時(shí),求PA的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著馬拉松運(yùn)動(dòng)在全國(guó)各地逐漸興起,參與馬拉松訓(xùn)練與比賽的人數(shù)逐年增加.為此,某市對(duì)參加馬拉松運(yùn)動(dòng)的情況進(jìn)行了統(tǒng)計(jì)調(diào)査,其中一項(xiàng)是調(diào)査人員從參與馬拉松運(yùn)動(dòng)的人中隨機(jī)抽取100人,對(duì)其每月參與馬拉松運(yùn)動(dòng)訓(xùn)練的夭數(shù)進(jìn)行統(tǒng)計(jì),得到以下統(tǒng)計(jì)表;
平均每月進(jìn)行訓(xùn)練的天數(shù) |
|
|
|
人數(shù) | 15 | 60 | 25 |
(1)以這100人平均每月進(jìn)行訓(xùn)練的天數(shù)位于各區(qū)間的頻率代替該市參與馬拉松訓(xùn)練的人平均每月進(jìn)行訓(xùn)練的天數(shù)位于該區(qū)間的概率.從該市所有參與馬拉松訓(xùn)練的人中隨機(jī)抽取4個(gè)人,求恰好有2個(gè)人是“平均每月進(jìn)行訓(xùn)練的天數(shù)不少于20天”的概率;
(2)依據(jù)統(tǒng)計(jì)表,用分層抽樣的方法從這100個(gè)人中抽取12個(gè),再?gòu)某槿〉?/span>12個(gè)人中隨機(jī)抽取3個(gè),
表示抽取的是“平均每月進(jìn)行訓(xùn)練的天數(shù)不少于20天”的人數(shù),求
的分布列及數(shù)學(xué)期望![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
的參數(shù)方程為
(其中
為參數(shù)),以原點(diǎn)為極點(diǎn),以
軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
(
為常數(shù),且
),直線
與曲線
交于
兩點(diǎn).
(1)若
,求實(shí)數(shù)
的值;
(2)若點(diǎn)
的直角坐標(biāo)為
,且
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱柱
中,
平面
,底面
是邊長(zhǎng)為
的正方形,
與
交于點(diǎn)
,
與
交于點(diǎn)
,且
.
![]()
(Ⅰ)證明:
平面
;
(Ⅱ)求
的長(zhǎng)度;
(Ⅲ)求直線
與
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
垂直于
所在的平面
,
為
的直徑,
是弧
上的一個(gè)動(dòng)點(diǎn)(不與端點(diǎn)
重合),
為
上一點(diǎn),且
是線段
上的一個(gè)動(dòng)點(diǎn)(不與端點(diǎn)
重合).
![]()
(1)求證:
平面
;
(2)若
是弧
的中點(diǎn),
是銳角,且三棱錐
的體積為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a(lnx
2)
1在定義域(0,2)內(nèi)有兩個(gè)極值點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)設(shè)x1和x2是f(x)的兩個(gè)極值點(diǎn),求證:lnx1+lnx2+lna
0.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com