【題目】已知圓
,直線
,若直線
上存在點(diǎn)
,過點(diǎn)
引圓的兩條切線
,使得
,則實(shí)數(shù)
的取值范圍是( )
A.
B. [
,
]
C.
D.
)
【答案】D
【解析】
由題意結(jié)合幾何性質(zhì)可知點(diǎn)P的軌跡方程為
,則原問題轉(zhuǎn)化為圓心到直線的距離小于等于半徑,據(jù)此求解關(guān)于k的不等式即可求得實(shí)數(shù)k的取值范圍.
圓C(2,0),半徑r=
,設(shè)P(x,y),
因?yàn)閮汕芯
,如下圖,PA⊥PB,由切線性質(zhì)定理,知:
PA⊥AC,PB⊥BC,PA=PB,所以,四邊形PACB為正方形,所以,|PC|=2,
則:
,即點(diǎn)P的軌跡是以(2,0)為圓心,2為半徑的圓.
![]()
直線
過定點(diǎn)(0,-2),直線方程即
,
只要直線與P點(diǎn)的軌跡(圓)有交點(diǎn)即可,即大圓的圓心到直線的距離小于等于半徑,
即:
,解得:
,
即實(shí)數(shù)
的取值范圍是
).
本題選擇D選項(xiàng).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
,
為橢圓的左、右焦點(diǎn),點(diǎn)
在直線
上且不在
軸上,直線
與橢圓的交點(diǎn)分別為
和
,
為坐標(biāo)原點(diǎn).
設(shè)直線
的斜率為
,證明:![]()
問直線
上是否存在點(diǎn)
,使得直線
的斜率
滿足
?若存在,求出所有滿足條件的點(diǎn)
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在幾何體
中,
是等邊三角形,
平面
,
,且
.
![]()
(I)試在線段
上確定點(diǎn)
的位置,使
平面
,并證明;
(Ⅱ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)求使方程
存在兩個(gè)實(shí)數(shù)解時(shí),
的取值范圍;
(2)設(shè)
,函數(shù)
,
.若對任意
,總存在
,使得
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:
,圓C:
.
若過拋物線E的焦點(diǎn)F的直線l與圓C相切,求直線l方程;
在
的條件下,若直線l交拋物線E于A,B兩點(diǎn),x軸上是否存在點(diǎn)
使
為坐標(biāo)原點(diǎn)
?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,圓
的參數(shù)方程為
(
為參數(shù)),過點(diǎn)
作斜率為
的直線
與圓
交于
,
兩點(diǎn).
(1)若圓心
到直線
的距離為
,求
的值;
(2)求線段
中點(diǎn)
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點(diǎn)E、F分別在棱BB1、CC1上,且BE=
BB1,C1F=
CC1.
![]()
(1)求異面直線AE與A1F所成角的大。
(2)求平面AEF與平面ABC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某區(qū)“創(chuàng)文明城區(qū)”(簡稱“創(chuàng)城”)活動(dòng)中,教委對本區(qū)
四所高中學(xué)校按各校人數(shù)分層抽樣,隨機(jī)抽查了100人,將調(diào)查情況進(jìn)行整理后制成下表:
學(xué)校 |
|
|
|
|
抽查人數(shù) | 50 | 15 | 10 | 25 |
“創(chuàng)城”活動(dòng)中參與的人數(shù) | 40 | 10 | 9 | 15 |
(注:參與率是指:一所學(xué)校“創(chuàng)城”活動(dòng)中參與的人數(shù)與被抽查人數(shù)的比值)假設(shè)每名高中學(xué)生是否參與”創(chuàng)城”活動(dòng)是相互獨(dú)立的.
(1)若該區(qū)共2000名高中學(xué)生,估計(jì)
學(xué)校參與“創(chuàng)城”活動(dòng)的人數(shù);
(2)在隨機(jī)抽查的100名高中學(xué)生中,隨機(jī)抽取1名學(xué)生,求恰好該生沒有參與“創(chuàng)城”活動(dòng)的概率;
(3)在上表中從
兩校沒有參與“創(chuàng)城”活動(dòng)的同學(xué)中隨機(jī)抽取2人,求恰好
兩校各有1人沒有參與“創(chuàng)城”活動(dòng)的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
為
(
為參數(shù)).在以
為原點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,曲線
的極坐標(biāo)方程為
,射線
與
除極點(diǎn)外的一個(gè)交點(diǎn)為
,設(shè)直線
經(jīng)過點(diǎn)
,且傾斜角為
,直線
與曲線
的兩個(gè)交點(diǎn)為
.
(1)求
的普通方程和
的直角坐標(biāo)方程;
(2)求
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com