欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,a11=8,設(shè)bn=log2an,且b4=17.
(Ⅰ)求證:數(shù)列{bn}是以-2為公差的等差數(shù)列;
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn的最大值.

分析 (Ⅰ)利用等比數(shù)列以及對數(shù)的運(yùn)算法則,轉(zhuǎn)化證明數(shù)列{bn}是以-2為公差的等差數(shù)列;
(Ⅱ)求出數(shù)列的和,利用二次函數(shù)的性質(zhì)求解最大值即可.

解答 (本小題共13分)
解:(Ⅰ)證明:設(shè)等比數(shù)列{an}的公比為q,
則bn+1-bn=log2an+1-log2an=$lo{g_2}\frac{{{a_{n+1}}}}{a_n}$=log2q,
因此數(shù)列{bn}是等差數(shù)列.
又b11=log2a11=3,b4=17,
又等差數(shù)列{bn}的公差$d=\frac{{{b_{11}}-{b_4}}}{7}=-2$,
即bn=25-2n.即數(shù)列{bn}是以-2為公差的等差數(shù)列.…(6分)
(Ⅱ)設(shè)等差數(shù)列{bn}的前n項(xiàng)和為Sn,
則${S_n}=\frac{{({b_1}+{b_n})}}{2}$n=$\frac{(23+25-2n)n}{2}$=(24-n)n=-(n-12)2+144,
于是當(dāng)n=12時,Sn有最大值,最大值為144.…(13分)

點(diǎn)評 本題考查數(shù)列求和,等差數(shù)列的證明,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若a3=2a4=2,則S6=$\frac{63}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)a=0.30.1,b=log${\;}_{\frac{1}{3}}$$\frac{1}{5}$,c=log425,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.a>c>bC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,將繪有函數(shù)f(x)=2sin(ωx+φ)(ω>0,$\frac{π}{2}$<φ<π)的部分圖象的紙片沿x軸折成直二面角,若AB之間的空間距離為2$\sqrt{3}$,則f(-1)=( 。
A.-2B.2C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=lnx-2ax,a∈R.
(Ⅰ)若函數(shù)y=f(x)存在與直線2x-y=0垂直的切線,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)g(x)=f(x)+$\frac{1}{2}{x^2}$,若g(x)有極大值點(diǎn)x1,求證:$\frac{{ln{x_1}}}{x_1}+\frac{1}{{{x_1}^2}}$>a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知實(shí)數(shù)x,y滿足的約束條件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≥3}\end{array}\right.$,則z=4x-2y的最小值是(  )
A.-15B.-4C.6D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}{2x+y≥4}\\{x-y≥-1}\\{x-2y≤2}\end{array}\right.$,則z=x+y為(  )
A.有最小值2,無最大值B.有最小值2,最大值3
C.有最大值3,無最小值D.既無最小值,也無最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,$\overrightarrow$與$\overrightarrow$-$\overrightarrow{a}$的夾角為120°,則|$\overrightarrow$|的取值范圍是(0,1);|$\overrightarrow$|2-($\overrightarrow{a}$•$\overrightarrow$)2的最大值為$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若對任意的 x,y∈(0,+∞),不等式ex+y-4+ex-y-4+6≥4xlna恒成立,則正實(shí)數(shù)a的最大值是( 。
A.$\sqrt{e}$B.$\frac{1}{2}e$C.eD.2e

查看答案和解析>>

同步練習(xí)冊答案