【題目】已知
.其中
,
表示直線,
、β表示平面,給出如下5個命題:
①若
//
,則
//
;
②若
⊥
,則
⊥
;
③
與
不垂直,則
不可能成立;
④若
,則
;
⑤
,則
;
其中真命題的個數(shù)是( )
A.
B.
C.
D.![]()
【答案】C
【解析】
根據(jù)線面位置關(guān)系,逐項(xiàng)判斷,即可求得答案.
對①,根據(jù)兩個平面相互平行,一個平面內(nèi)的直線平行于另一平面,由
,
//
,則
//
,故①是真命題;
對②,根據(jù)一個平面內(nèi)的一條直線垂直另一個平面內(nèi)的兩條相交線,則這兩個平面垂直,所以由
⊥
,不能推出
⊥
,故②假命題;
對③,畫出正方體圖象:
![]()
面
面
,
根據(jù)正方體特征可得:
,
故:
與
不垂直,則
可能成立,故③假命題;
對④,根據(jù)一個平面內(nèi)的一條直線垂直另一個平面的兩條相交線,則這兩個平面垂直,所以由
,不能推出
,故④假命題;
對⑤,根據(jù)兩個平面垂直,一個平面內(nèi)的直線垂直于交線,這條直線也垂直于另一個平面,由
,則
,故⑤是真命題.
綜上所述,①⑤是真命題
故選:C.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線
,
為直線
上的動點(diǎn),過點(diǎn)
作拋物線
的兩條切線,切點(diǎn)分別為
,
.
(1)證明:直線
過定點(diǎn);
(2)若以
為圓心的圓與直線
相切,且切點(diǎn)為線段
的中點(diǎn),求該圓的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)
,
(1)討論函數(shù)f(x)的單調(diào)性;
(2)證明:a=1時(shí),f(x)+g(x)﹣(1
)lnx>e.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
(
)的右頂點(diǎn)為
.左、右焦點(diǎn)分別為
,
,過點(diǎn)
且垂直于
軸的直線交橢圓于點(diǎn)
(
在第象限),直線
的斜率為
,與
軸交于點(diǎn)
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)
的直線與橢圓交于
、
兩點(diǎn)(
、
不與
、
重合),若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由
個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由
個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設(shè)
,若在大正六邊形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正六邊形的概率為( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若f(x)在[0,2]上是單調(diào)函數(shù),求a的值;
(2)已知對
∈[1,2],f(x)≤1均成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠商調(diào)查甲、乙兩種不同型號電視機(jī)在10個賣場的銷售量(單位:臺),并根據(jù)這10個賣場的銷售情況,得到如圖所示的莖葉圖.
![]()
為了鼓勵賣場,在同型號電視機(jī)的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號電視機(jī)的“星級賣場”.
(1)當(dāng)
時(shí),記甲型號電視機(jī)的“星級賣場”數(shù)量為
,乙型號電視機(jī)的“星級賣場”數(shù)量為
,比較
的大小關(guān)系;
(2)在這10個賣場中,隨機(jī)選取2個賣場,記
為其中甲型號電視機(jī)的“星級賣場”的個數(shù),求
的分布列和數(shù)學(xué)期望;
(3)若
,記乙型號電視機(jī)銷售量的方差為
,根據(jù)莖葉圖推斷
為何值時(shí),
達(dá)到最小值.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中社團(tuán)進(jìn)行社會實(shí)踐,對[25,55]歲的人群隨機(jī)抽取n人進(jìn)行了一次是否開通“微博”的調(diào)查,若開通“微博”的稱為“時(shí)尚族”,否則稱為“非時(shí)尚族”,通過調(diào)查分別得到如圖所示統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖: ![]()
![]()
完成以下問題:
(Ⅰ)補(bǔ)全頻率分布直方圖并求n,a,p的值;
(Ⅱ)從[40,50)歲年齡段的“時(shí)尚族”中采用分層抽樣法抽取18人參加網(wǎng)絡(luò)時(shí)尚達(dá)人大賽,其中選取3人作為領(lǐng)隊(duì),記選取的3名領(lǐng)隊(duì)中年齡在[40,45)歲的人數(shù)為X,求X的分布列和期望E(X)..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論
的單調(diào)性.
(2)試問是否存在
,使得
對
恒成立?若存在,求
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com