【題目】已知函數(shù)f(x)=lnx﹣sinx,記f(x)的導(dǎo)函數(shù)為f'(x).
(1)若h(x)=ax
f'(x)是(0,+∞)上的單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若x∈(0,2π),試判斷函數(shù)f(x)的極值點(diǎn)個(gè)數(shù),并說(shuō)明理由.
【答案】(1)a≥1;(2)函數(shù)f(x)在(0,2π)上有且僅有唯一的極大值點(diǎn),無(wú)極小值點(diǎn);理由詳見(jiàn)解析
【解析】
(1)只需h′(x)≥0在(0,+∞)恒成立,借助于三角函數(shù)的有界性,問(wèn)題可解決.
(2)分x∈(0,1),
,
,
四種情形分別研究f(x)的單調(diào)性,進(jìn)而得出結(jié)論.
解:(1)∵
,
∴
ax+cosx,因?yàn)?/span>h(x)是(0,+∞)上的單調(diào)遞增函數(shù),
∴h′(x)=a﹣sinx≥0(x>0)恒成立,因?yàn)?/span>sinx∈[﹣1,1],
故a≥1時(shí),h′(x)≥0恒成立,且導(dǎo)數(shù)為0時(shí)不連續(xù).
故a≥1即為所求.
(2)由(1)知,
,
①當(dāng)x∈(0,1]時(shí),f′(x)≥1﹣cosx>0,
此時(shí)函數(shù)f(x)單調(diào)遞增,無(wú)極值點(diǎn);
②當(dāng)
時(shí),則
,
∵
,而由三角函數(shù)的性質(zhì)可知,
,
∴
,
此時(shí)函數(shù)f(x)單調(diào)遞增,無(wú)極值點(diǎn);
③當(dāng)
時(shí),cosx<0,則
,
此時(shí)函數(shù)f(x)單調(diào)遞增,無(wú)極值點(diǎn);
④當(dāng)
時(shí),令
,則
,
∴函數(shù)g(x)單調(diào)遞減,
又
,
∴存在唯一的
,使得g(x0)=0,
且當(dāng)
時(shí),g(x)=f′(x)>0,f(x)單調(diào)遞增,
當(dāng)x∈(x0,2π)時(shí),g(x)=f′(x)<0,f(x)單調(diào)遞減,
故x0是函數(shù)f(x)的極大值點(diǎn),
綜上所述,函數(shù)f(x)在(0,2π)上有且僅有唯一的極大值點(diǎn),無(wú)極小值點(diǎn).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若有平面
與
,
,
,
,
,則下列命題中真命題的序號(hào)有________.(1)過(guò)點(diǎn)
且垂直于
的直線平行于
;(2)過(guò)點(diǎn)
且垂直于
的平面垂直于
;(3)過(guò)點(diǎn)
且垂直于
的直線在
內(nèi);(4)過(guò)點(diǎn)
且垂直于
的直線在
內(nèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=
其中λ為實(shí)數(shù),n為正整數(shù).
(Ⅰ)對(duì)任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;
(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅲ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有
a<Sn<b?若存在,求λ的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
,
是拋物線
上的兩個(gè)動(dòng)點(diǎn),
是坐標(biāo)原點(diǎn),向量
,
滿足
.設(shè)圓
的方程為
.
(1)證明線段
是圓
的直徑;
(2)當(dāng)圓
的圓心到直線
的距離的最小值為
時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的不等式2lnx≤ax2+(2a﹣2)x+1恒成立,則a的最小整數(shù)值是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形
中,
,
,現(xiàn)沿對(duì)角線
將
折起,使點(diǎn)A到達(dá)點(diǎn)P,點(diǎn)M,N分別在直線
,
上,且A,B,M,N四點(diǎn)共面.
![]()
(1)求證:
;
(2)若平面
平面
,二面角
平面角大小為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2+2ax﹣lnx﹣1,a∈R.
(1)當(dāng)a
時(shí),求f(x)的單調(diào)區(qū)間及極值;
(2)若a為整數(shù),且不等式f(x)≥x對(duì)任意x∈(0,+∞)恒成立,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查,為此需要抽驗(yàn)960人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.
方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)960次.
方案②:按
個(gè)人一組進(jìn)行隨機(jī)分組,把從每組
個(gè)人抽來(lái)的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這
個(gè)人的血就只需檢驗(yàn)一次;否則,若呈陽(yáng)性,則需對(duì)這
個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這樣,該組
個(gè)人的血總共需要化驗(yàn)
次.
假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為
,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.
(1)設(shè)方案②中,某組
個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為
,求
的分布列;
(2)設(shè)
,試比較方案②中,
分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù)).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com