【題目】設(shè)某單位用2160萬元購得一塊空地,計劃在該空地上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費用為560+48x(單位:元).
(1)寫出樓房平均綜合費用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;
(2)該樓房應(yīng)建造多少層時,可使樓房每平方米的平均綜合費用最少?最少值是多少?
(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=購地總費用/建筑總面積)
【答案】(1)y=560+48x+
(x≥10,x∈N*).(2)當(dāng)該樓房建造15層時,可使樓房每平方米的平均綜合費用最少,最少值為2000元
【解析】試題分析:(1)由已知得,樓房每平方米的平均綜合費為每平方米的平均建筑費用為560+48x與平均地皮費用的和,由已知中某單位用2160萬元購得一塊空地,計劃在該地塊上建造一棟x層,每層2000平方米的樓房,我們易得樓房平均綜合費用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;(2)由(1)中的樓房平均綜合費用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式,要求樓房每平方米的平均綜合費用最小值,我們有兩種思路,一是利用基本不等式,二是使用導(dǎo)數(shù)法,分析函數(shù)的單調(diào)性,再求最小值
試題解析:(1)依題意得
y=(560+48x)+![]()
=560+48x+
(x≥10,x∈N*).
(2)∵x>0,∴48x+![]()
≥2
=1440,
當(dāng)且僅當(dāng)48x=
,即x=15時取到“=”,
此時,平均綜合費用的最小值為560+1440=2000(元).
答 當(dāng)該樓房建造15層時,可使樓房每平方米的平均綜合費用最少,最少值為2000元
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線
的極坐標(biāo)方程為
,它在點
處的切線為直線
.
(Ⅰ)求直線
的直角坐標(biāo)方程;
(Ⅱ)已知點
為橢圓
上一點,求點
到直線
的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營一批進(jìn)價為
元/臺的小商品,經(jīng)調(diào)查得知如下數(shù)據(jù).若銷售價上下調(diào)整,銷售量和利潤大體如下:
銷售價( |
|
|
|
|
日銷售量( |
|
|
|
|
日銷售額( |
| |||
日銷售利潤( |
|
(1)在下面給出的直角坐標(biāo)系中,根據(jù)表中的數(shù)據(jù)描出實數(shù)對
的對應(yīng)點,并寫出
與
的一個函數(shù)關(guān)系式;
![]()
(2)請把表中的空格里的數(shù)據(jù)填上;
(3)根據(jù)表中的數(shù)據(jù)求
與
的函數(shù)關(guān)系式,并指出當(dāng)銷售單價為多少元時,才能獲得最大日銷售利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A是實數(shù)集,滿足若a∈A,則
∈A,a≠1,且1A.
(1)若2∈A,則集合A中至少還有幾個元素?求出這幾個元素.
(2)集合A中能否只含有一個元素?請說明理由.
(3)若a∈A,證明:1-
∈A.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
經(jīng)過點
,離心率
,直線
的方程為
.
(1)求橢圓
的方程;
(2)經(jīng)過橢圓右焦點
的任一直線(不經(jīng)過點
)與橢圓交于兩點
,
,設(shè)直線
與
相交于點
,記
的斜率分別為
,問:
是否為定值,若是,求出此定值,若不是,請說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義滿足“如果a∈A,b∈A,那么a±b∈A,且ab∈A,且
∈A(b≠0)”的集合A為“閉集”.試問數(shù)集N,Z,Q,R是否分別為“閉集”?若是,請說明理由;若不是,請舉反例說明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個內(nèi)角A、B、C所對的邊分別是a、b、c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.
(1)求角B的大;
(2)若b=
,求a+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4;坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)).在以坐標(biāo)原點為極點,
軸正半軸為極軸的極坐標(biāo)中,曲線
.
(Ⅰ)求直線
的普通方程和曲線
的直角坐標(biāo)方程.
(Ⅱ)求曲線
上的點到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC=CA=
,AD=CD=1.
![]()
(1)求證:BD⊥AA1.
(2)在棱BC上取一點E,使得AE∥平面DCC1D1,求
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com