設(shè)函數(shù)
是定義域為
的奇函數(shù).
(1)求
的值;
(2)若
,且
在
上的最小值為
,求
的值.
(3)若
,試討論函數(shù)
在
上零點的個數(shù)情況。
(1)
;(2)
(3) 當(dāng)
時
在
上有一個零點;當(dāng)
時
在
上無零點.
解析試題分析:(1) 由奇函數(shù)的性質(zhì)求
,可用特殊值或用恒等式對應(yīng)項系數(shù)相等,如果0在奇函數(shù)的定義域內(nèi),則一定有
,如果不在可任取定義域內(nèi)兩個相反數(shù)代入求
.
(2)由
求出
,代入得
,換元
,注意自變量的取值范圍,每設(shè)出一個子母都要把它取的范圍縮到最小以有利于解題, 所以得到
得到一個新的函數(shù)
,
利用二次函數(shù)函數(shù)單調(diào)性求最值方法得到
,二次函數(shù)在區(qū)間上的最值在端點處或頂點處,遇到對稱軸或區(qū)間含有待定的字母,則要按對稱軸在不在區(qū)間內(nèi)以及區(qū)間中點進行討論.
(3)由函數(shù)零點判定轉(zhuǎn)化為二次方程根的判定,即
在
解個數(shù)情況,這個解起來比較麻煩,所以可以用函數(shù)單調(diào)性先來判定零點的個數(shù),即
在
上為增函數(shù),也就是在
這個區(qū)間上是一一映射,
時的每個值方程
只有一個解.
試題解析:
(1)
為
上的奇函數(shù)
即![]()
![]()
(2)由(1)知![]()
解得
或
(舍)
且
在
上遞增![]()
令
則![]()
所以令
,
且![]()
因為
的對稱軸為![]()
Ⅰ當(dāng)
時![]()
解得
(舍)
Ⅱ當(dāng)
時![]()
解得![]()
綜上:![]()
(3)由(2)可得:
令
則![]()
即求
,
零點個數(shù)情況
即求
在
解個數(shù)情況
由
得
,![]()
所以
在
上為增函數(shù)
當(dāng)
時
有最小值為![]()
所以當(dāng)
時
方程在
上有一根,即函數(shù)有一個零點
當(dāng)
時
方程在
上無根,即函數(shù)無零點
綜上所述:當(dāng)
時
在![]()
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
.
(Ⅰ)當(dāng)
時,判斷
的奇偶性,并說明理由;
(Ⅱ)當(dāng)
時,若
,求
的值;
(Ⅲ)若
,且對任何
不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
是實數(shù),設(shè)
為該函數(shù)的圖象上的兩點,且
.
⑴指出函數(shù)
的單調(diào)區(qū)間;
⑵若函數(shù)
的圖象在點
處的切線互相垂直,且
,求
的最小值;
⑶若函數(shù)
的圖象在點
處的切線重合,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,
是定義域為
的奇函數(shù).
(Ⅰ)求
的值,判斷并證明當(dāng)
時,函數(shù)
在
上的單調(diào)性;
(Ⅱ)已知
,函數(shù)
,求
的值域;
(Ⅲ)已知
,若
對于
時恒成立.請求出最大的整數(shù)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域為
的函數(shù)
是奇函數(shù).
(1)求
的值
(2)判斷并證明
的單調(diào)性;
(3)若對任意的
,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若非零函數(shù)
對任意實數(shù)
均有
,且當(dāng)
時![]()
(1)求證:
;
(2)求證:
為R上的減函數(shù);
(3)當(dāng)
時, 對
恒有
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若
的定義域為
,值域為
,則稱函數(shù)
是
上的“四維方軍”函數(shù).
(1)設(shè)
是
上的“四維方軍”函數(shù),求常數(shù)
的值;
(2)問是否存在常數(shù)
使函數(shù)
是區(qū)間
上的“四維方軍”函數(shù)?若存在,求出
的值,否則,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com