【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查高中生性別與愛(ài)好某項(xiàng)運(yùn)動(dòng)是否有關(guān),通過(guò)隨機(jī)調(diào)查200名高中生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),利用
列聯(lián)表,由計(jì)算可得
,參照下表:
| 0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正確結(jié)論是( )
A. 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
B. 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
C. 在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在長(zhǎng)方形
中,
為
的中點(diǎn),
為線段
上一動(dòng)點(diǎn).現(xiàn)將
沿
折起,形成四棱錐
.
![]()
(1)若
與
重合,且
(如圖2).證明:
平面
;
(2)若
不與
重合,且平面
平面
(如圖3),設(shè)
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】質(zhì)量監(jiān)督局檢測(cè)某種產(chǎn)品的三個(gè)質(zhì)量指標(biāo)
,用綜合指標(biāo)
核定該產(chǎn)品的等級(jí).若
,則核定該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:
![]()
(1)利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;
(2)在該樣品的一等品中,隨機(jī)抽取2件產(chǎn)品,設(shè)事件
為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)均滿足
”,求事件
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
為實(shí)數(shù),函數(shù)
.
(1)當(dāng)
時(shí),求
在區(qū)間
上的最大值;
(2)設(shè)函數(shù)
為
在區(qū)間
上的最大值,求
的解析式;
(3)求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
,
,點(diǎn)
為曲線
上任意一點(diǎn)且滿足
.
(1)求曲線
的方程;
(2)設(shè)曲線
與
軸交于
、
兩點(diǎn),點(diǎn)
是曲線
上異于
、
的任意一點(diǎn),直線
、
分別交直線
于點(diǎn)
、
.求證:以
為直線的圓
與
軸交于定點(diǎn)
,并求出點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
,
,點(diǎn)
為曲線
上任意一點(diǎn)且滿足
.
(1)求曲線
的方程;
(2)設(shè)曲線
與
軸交于
、
兩點(diǎn),點(diǎn)
是曲線
上異于
、
的任意一點(diǎn),直線
、
分別交直線
于點(diǎn)
、
.試問(wèn)在
軸上是否存在一個(gè)定點(diǎn)
,使得
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
,點(diǎn)
,點(diǎn)
是圓
上任意一點(diǎn),線段
的中垂線與
交于點(diǎn)
.
(Ⅰ)求點(diǎn)
的軌跡
的方程.
(Ⅱ)斜率不為0的動(dòng)直線
過(guò)點(diǎn)
且與軌跡
交于
,
兩點(diǎn),
為坐標(biāo)原點(diǎn).是否存在常數(shù)
,使得
為定值?若存在,求出這個(gè)定值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一微商店對(duì)某種產(chǎn)品每天的銷售量(
件)進(jìn)行為期一個(gè)月的數(shù)據(jù)統(tǒng)計(jì)分析,并得出了該月銷售量的直方圖(一個(gè)月按30天計(jì)算)如圖所示.假設(shè)用直方圖中所得的頻率來(lái)估計(jì)相應(yīng)事件發(fā)生的概率.
![]()
(1)求頻率分布直方圖中
的值;
(2)求日銷量的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)若微商在一天的銷售量超過(guò)25件(包括25件),則上級(jí)商企會(huì)給微商贈(zèng)送100元的禮金,估計(jì)該微商在一年內(nèi)獲得的禮金數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一幾何體的平面展開(kāi)圖如圖所示,其中四邊形
為正方形,
、
分別為
、
的中點(diǎn),在此幾何體中,給出的下面結(jié)論中正確的有( )
![]()
A. 直線
與直線
異面 B. 直線
與直線
異面
C. 直線
平面
D. 直線
平面![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com