【題目】設(shè)函數(shù)
.
(1)若曲線
與
在它們的交點(diǎn)
處有相同的切線,求實數(shù)a,b的值;
(2)當(dāng)
時,若函數(shù)
在區(qū)間
內(nèi)恰有兩個零點(diǎn),求實數(shù)的取值范圍.
【答案】(1)
.(2)![]()
【解析】
(1) 由曲線
與
在它們的交點(diǎn)
處有相同的切線,可得
,且
,可得a,b的值.
(2) 當(dāng)
時,可得
,可得
,令
,解得
,所以函數(shù)
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
,故
在區(qū)間
上單調(diào)遞增,在區(qū)間
上單調(diào)遞減,由
在區(qū)間
內(nèi)恰有兩個零點(diǎn),列出關(guān)于a的不等式,可得a的取值范圍.
解:(1)因為![]()
所以
,![]()
因為曲線
與
在它們的交點(diǎn)
處有相同的切線,
所以
,且
,即
,且
,
解得
.
(2)當(dāng)
時,
,
所以![]()
令
,解得
.
當(dāng)x變化時,
,
的變化情況如下表:
x |
|
|
| a |
|
| + | 0 | - | 0 | + |
|
| 極大值 |
| 極小值 |
|
所以函數(shù)
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
,
故
在區(qū)間
上單調(diào)遞增,在區(qū)間
上單調(diào)遞減.
又函數(shù)
在區(qū)間
內(nèi)恰有兩個零點(diǎn),所以有
,即![]()
解得
,所以實數(shù)a的取值范圍是
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電力公司在工程招標(biāo)中是根據(jù)技術(shù)、商務(wù)、報價三項評分標(biāo)準(zhǔn)進(jìn)行綜合評分的,按照綜合得分的高低進(jìn)行綜合排序,綜合排序高者中標(biāo).
分值權(quán)重表如下:
總分 | 技術(shù) | 商務(wù) | 報價 |
100% | 50% | 10% | 40% |
技術(shù)標(biāo)、商務(wù)標(biāo)基本都是由公司的技術(shù)、資質(zhì)、資信等實力來決定的.報價表則相對靈活,報價標(biāo)的評分方法是:基準(zhǔn)價的基準(zhǔn)分是68分,若報價每高于基準(zhǔn)價1%,則在基準(zhǔn)分的基礎(chǔ)上扣0.8分,最低得分48分;若報價每低于基準(zhǔn)價1%,則在基準(zhǔn)分的基礎(chǔ)上加0.8分,最高得分為80分.若報價低于基準(zhǔn)價15%以上(不含15%)每再低1%,在80分在基礎(chǔ)上扣0.8分.
在某次招標(biāo)中,若基準(zhǔn)價為1000(萬元).甲、乙兩公司綜合得分如下表:
公司 | 技術(shù) | 商務(wù) | 報價 |
甲 | 80分 | 90分 | A甲分 |
乙 | 70分 | 100分 | A乙分 |
甲公司報價為1100(萬元),乙公司的報價為800(萬元)則甲,乙公司的綜合得分,分別是( 。
A. 73,75.4B. 73,80C. 74.6,76D. 74.6,75.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)
處,極軸與
軸的非負(fù)半軸重合,且長度單位相同,直線
的極坐標(biāo)方程為
,曲線
(
為參數(shù)).其中
.
(1)試寫出直線
的直角坐標(biāo)方程及曲線
的普通方程;
(2)若點(diǎn)
為曲線
上的動點(diǎn),求點(diǎn)
到直線
距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是由菱形
,平行四邊形
和矩形
組成的一個平面圖形,其中
,
,
,
,將其沿
,
折起使得
與
重合,如圖2.
![]()
(1)證明:圖2中的平面
平面
;
(2)求圖2中點(diǎn)
到平面
的距離;
(3)求圖2中二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列
中,
,
.令
,數(shù)列
的前
項和為
.
(1)求數(shù)列
的通項公式;
(2)求數(shù)列
的前
項和
;
(3)是否存在正整數(shù)
,(![]()
),使得
,
,
成等比數(shù)列?若存在,求出所有的
,
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時,求
的單調(diào)區(qū)間;
(2)若對任意
,都有
成立,求實數(shù)
的取值范圍;
(3)若過點(diǎn)
可作函數(shù)
圖像的三條不同切線,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】司機(jī)在開機(jī)動車時使用手機(jī)是違法行為,會存在嚴(yán)重的安全隱患,危及自己和他人的生命. 為了研究司機(jī)開車時使用手機(jī)的情況,交警部門調(diào)查了
名機(jī)動車司機(jī),得到以下統(tǒng)計:在
名男性司機(jī)中,開車時使用手機(jī)的有
人,開車時不使用手機(jī)的有
人;在
名女性司機(jī)中,開車時使用手機(jī)的有
人,開車時不使用手機(jī)的有
人.
(1)完成下面的
列聯(lián)表,并判斷是否有
的把握認(rèn)為開車時使用手機(jī)與司機(jī)的性別有關(guān);
開車時使用手機(jī) | 開車時不使用手機(jī) | 合計 | |
男性司機(jī)人數(shù) | |||
女性司機(jī)人數(shù) | |||
合計 |
(2)以上述的樣本數(shù)據(jù)來估計總體,現(xiàn)交警部門從道路上行駛的大量機(jī)動車中隨機(jī)抽檢3輛,記這3輛車中司機(jī)為男性且開車時使用手機(jī)的車輛數(shù)為
,若每次抽檢的結(jié)果都相互獨(dú)立,求
的分布列和數(shù)學(xué)期望
.
參考公式與數(shù)據(jù):
參考數(shù)據(jù):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
參考公式
span>,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】河北省高考改革后高中學(xué)生實施選課走班制,若某校學(xué)生選擇物理學(xué)科的人數(shù)為800人,高二期中測試后,由學(xué)生的物理成績,調(diào)研選課走班制學(xué)生的學(xué)習(xí)情況及效果,為此決定從這800人中抽取
人,其頻率分布情況如下:
分?jǐn)?shù) | 頻數(shù) | 頻率 |
| 8 | 0.08 |
| 18 | 0.18 |
| 20 | 0.2 |
|
| 0.24 |
| 15 |
|
| 10 | 0.10 |
| 5 | 0.05 |
合計 |
| 1 |
(1)計算表格中
,
,
的值;
(2)為了了解成績在
,
分?jǐn)?shù)段學(xué)生的情況,先決定利用分層抽樣的方法從這兩個分?jǐn)?shù)段中抽取6人,再從這6人中隨機(jī)抽取2人進(jìn)行面談,求2人來自不同分?jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:
經(jīng)過點(diǎn)
,A,B是拋物線C上異于點(diǎn)O的不同的兩點(diǎn),其中O為原點(diǎn).
(1)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(2)若
,求
面積的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com