【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)).
(1)求
和
的直角坐標(biāo)方程;
(2)若曲線
截直線
所得線段的中點(diǎn)坐標(biāo)為
,求
的斜率.
【答案】(1)當(dāng)
時(shí),
的直角坐標(biāo)方程為
,當(dāng)
時(shí),
的直角坐標(biāo)方程為
.(2)![]()
【解析】分析:(1)根據(jù)同角三角函數(shù)關(guān)系將曲線
的參數(shù)方程化為直角坐標(biāo)方程,根據(jù)代入消元法將直線
的參數(shù)方程化為直角坐標(biāo)方程,此時(shí)要注意分
與
兩種情況.(2)將直線
參數(shù)方程代入曲線
的直角坐標(biāo)方程,根據(jù)參數(shù)幾何意義得
之間關(guān)系,求得
,即得
的斜率.
詳解:(1)曲線
的直角坐標(biāo)方程為
.
當(dāng)
時(shí),
的直角坐標(biāo)方程為
,
當(dāng)
時(shí),
的直角坐標(biāo)方程為
.
(2)將
的參數(shù)方程代入
的直角坐標(biāo)方程,整理得關(guān)于
的方程
.①
因?yàn)榍
截直線
所得線段的中點(diǎn)
在
內(nèi),所以①有兩個(gè)解,設(shè)為
,
,則
.
又由①得
,故
,于是直線
的斜率
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐S﹣ABCD中,底面ABCD是邊長為4的菱形,∠BAD=60°,SA=SD=2
,點(diǎn)E是棱AD的中點(diǎn),點(diǎn)F在棱SC上,且
λ,SA//平面BEF.
![]()
(1)求實(shí)數(shù)λ的值;
(2)求三棱錐F﹣EBC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校組織了一次新高考質(zhì)量測評(píng),在成績統(tǒng)計(jì)分析中,某班的數(shù)學(xué)成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:
![]()
![]()
(1)求該班數(shù)學(xué)成績在
的頻率及全班人數(shù);
(2)根據(jù)頻率分布直方圖估計(jì)該班這次測評(píng)的數(shù)學(xué)平均分;
(3)若規(guī)定90分及其以上為優(yōu)秀,現(xiàn)從該班分?jǐn)?shù)在80分及其以上的試卷中任取2份分析學(xué)生得分情況,求在抽取的2份試卷中至少有1份優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線
由左半橢圓
和圓
在
軸右側(cè)的部分連接而成,
,
是
與
的公共點(diǎn),點(diǎn)
,
(均異于點(diǎn)
,
)分別是
,
上的動(dòng)點(diǎn).
(Ⅰ)若
的最大值為
,求半橢圓
的方程;
(Ⅱ)若直線
過點(diǎn)
,且
,
,求半橢圓
的離心率.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)高考與高中學(xué)習(xí)的關(guān)聯(lián)度,考生總成績由統(tǒng)一高考的語文、數(shù)學(xué)、外語3個(gè)科目成績和高中學(xué)業(yè)水平考試3個(gè)科目成績組成.保持統(tǒng)一高考的語文、數(shù)學(xué)、外語科目不變,分值不變,不分文理科,外語科目提供兩次考試機(jī)會(huì).計(jì)入總成績的高中學(xué)業(yè)水平考試科目,由考生根據(jù)報(bào)考高校要求和自身特長,在思想政治、歷史、地理、物理、化學(xué)、生物、信息技術(shù)七科目中自主選擇三科.
(1)某高校某專業(yè)要求選考科目物理,考生若要報(bào)考該校該專業(yè),則有多少種選考科目的選擇;
(2)甲、乙、丙三名同學(xué)都選擇了物理、化學(xué)、歷史組合,各學(xué)科成績達(dá)到二級(jí)的概率都是0.8,且三人約定如果達(dá)到二級(jí)不參加第二次考試,達(dá)不到二級(jí)參加第二次考試,如果設(shè)甲、乙、丙參加第二次考試的總次數(shù)為
,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是定義域?yàn)?/span>
的奇函數(shù).
(1)求實(shí)數(shù)
的值;
(2)若
,不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍;
(3)若
且
上最小值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
是虛數(shù),
是實(shí)數(shù),且
.
(1)求
的值以及
的實(shí)部的取值范圍;
(2)若
,求證
為純虛數(shù);
(3)在(2)的條件下,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,側(cè)面
底面ABCD,側(cè)棱
,
,底面ABCD為直角梯形,其中
,
,
,O為AD中點(diǎn).
求直線PB與平面POC所成角的余弦值.
求B點(diǎn)到平面PCD的距離.
線段PD上是否存在一點(diǎn)Q,使得二面角
的余弦值為
?若存在,求出
的值;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個(gè)命題:
①函數(shù)
的一條對稱軸是
;
②函數(shù)
的圖象關(guān)于點(diǎn)(
,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù)
④若
,則
,其中![]()
以上四個(gè)命題中正確的有 (填寫正確命題前面的序號(hào))
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com