【題目】求下列函數(shù)的最值
(1)求函數(shù)
的最小值.
(2)求函數(shù)
的最小值.
(3)設(shè)
,
,若
,求
的最小值.
(4)若正數(shù)
,
滿足
,求
的最小值.
【答案】(1)
.(2)
.(3)
.(4)![]()
【解析】
(1)先將函數(shù)表達(dá)式轉(zhuǎn)化為
,再由基本不等式求得函數(shù)的最小值.
(2)先將函數(shù)表達(dá)式轉(zhuǎn)化為
,再由基本不等式求得函數(shù)的最小值.
(3)先將所求表達(dá)式轉(zhuǎn)化為
,再由基本不等式求得最小值.
(4)利用“
”的代換的方法,化簡(jiǎn)所求表達(dá)式,再由基本不等式求得最小值.
(1)
,故函數(shù)
的最小值為
,當(dāng)且僅當(dāng)
,即
時(shí)取得;
(2)
,故函數(shù)
的最小值為
,當(dāng)且僅當(dāng)
即
時(shí)取得;
(3)由題得
,代入原式,得
,故原式的最小值為
,當(dāng)且僅當(dāng)
,即
時(shí)取得;
(4)由題得
,則
,當(dāng)且僅當(dāng)
時(shí)取“
”,故最小值為5.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形
中,
,
,
平面
,
,
,
的中點(diǎn)為
.
(
)求證:
面
.
(
)求證:平面
平面
.
(
)當(dāng)
為何值時(shí),能使
?請(qǐng)給出證明.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限
和所支出的維修費(fèi)用
(萬(wàn)元)有如下的統(tǒng)計(jì)資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
維修費(fèi)用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由資料知
對(duì)
呈線性相關(guān)關(guān)系.
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)最小二乘法求出線性回歸方程
的回歸系數(shù)
.
(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),討論函數(shù)
的單調(diào)性;
(2)若不等式
對(duì)于任意
成立,求正實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱
中,側(cè)棱
底面
,
為棱
中點(diǎn).
,
,
.
![]()
(I)求證:
平面
.
(II)求證:
平面
.
(III)在棱
的上是否存在點(diǎn)
,使得平面
平面
?如果存在,求此時(shí)
的值;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
,
是雙曲線C:
的左,右焦點(diǎn),O是坐標(biāo)原點(diǎn)
過(guò)
作C的一條漸近線的垂線,垂足為P,若
,則C的離心率為
![]()
A.
B. 2 C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
是定義域?yàn)?/span>
的函數(shù)
的導(dǎo)函數(shù),
,
,則
的解集為( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)計(jì)劃種植某種新作物,為此對(duì)這種作物的兩個(gè)品種(分別稱為品種甲和品種乙)進(jìn)行田間試驗(yàn).選取兩大塊地,每大塊地分成
小塊地,在總共
小塊地中.隨機(jī)選
小塊地種植品種甲,另外
小塊地種植品種乙.
(
)假設(shè)
,求第一大塊地都種植品種甲的概率.
(
)試驗(yàn)時(shí)每大塊地分成
小塊.即
,試驗(yàn)結(jié)束后得到品種甲和品種乙在各個(gè)小塊地上的每公頃產(chǎn)量(單位
)如下表:
品種甲 |
|
|
|
|
|
品種乙 |
|
|
|
|
|
分別求品種甲和品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗(yàn)結(jié)果,你認(rèn)為應(yīng)該種植哪一品種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)若
為偶函數(shù),求
的值并寫出
的增區(qū)間;
(Ⅱ)若關(guān)于
的不等式
的解集為
,當(dāng)
時(shí),求
的最小值;
(Ⅲ)對(duì)任意的
,
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com