【題目】元朝著名的數(shù)學(xué)家朱世杰在《四元玉鑒》中有一首詩(shī):“我有一壺酒,攜著游春走.遇店添一倍,逢友飲一斗.”基于此情景,設(shè)計(jì)了如圖所示的程序框圖,若輸入的
,輸出的
,則判斷框中可以填( )
![]()
A.
B.
C.
D.![]()
【答案】B
【解析】
根據(jù)程序框圖的算法功能,模擬程序運(yùn)行,即可求出.
根據(jù)程序框圖可知,直到型循環(huán)結(jié)構(gòu),先執(zhí)行循環(huán)體,條件不滿足,繼續(xù)執(zhí)行循環(huán)體,條件滿足,跳出循環(huán)體,所以,
當(dāng)?shù)谝淮螆?zhí)行循環(huán)體時(shí),
,
,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;
當(dāng)?shù)诙螆?zhí)行循環(huán)體時(shí),
,
,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;
當(dāng)?shù)谌螆?zhí)行循環(huán)體時(shí),
,
,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;
當(dāng)?shù)谒拇螆?zhí)行循環(huán)體時(shí),
,
,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;
當(dāng)?shù)谖宕螆?zhí)行循環(huán)體時(shí),
,
,條件滿足,跳出循環(huán)體,輸出
,
即可知判斷框中條件為:![]()
故選:B.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)平面中,△ABC的兩個(gè)頂點(diǎn)A、B的坐標(biāo)分別為A(﹣1,0),B (1,0),平面內(nèi)兩點(diǎn)G、M同時(shí)滿足下列條件:(1)
;(2)
;(3)
∥
,則△ABC的頂點(diǎn)C的軌跡方程為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)雙曲線C:
1(a>0,b>0)右焦點(diǎn)F2作雙曲線一條漸近線的垂線,垂足為P,與雙曲線交于點(diǎn)A,若
,則雙曲線C的漸近線方程為( )
A.y=±
xB.y=±xC.y=±2xD.y=±
x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求
的極大值點(diǎn);
(2)當(dāng)
,
時(shí),若過(guò)點(diǎn)
存在3條直線與曲線
相切,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E:
,過(guò)右焦點(diǎn)F的直線l與橢圓E交于A,B兩點(diǎn)(A,B兩點(diǎn)不在x軸上),橢圓E在A,B兩點(diǎn)處的切線交于P,點(diǎn)P在定直線
上.
(1)記點(diǎn)
,求過(guò)點(diǎn)
與橢圓E相切的直線方程;
(2)以
為直徑的圓過(guò)點(diǎn)F,求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】超級(jí)細(xì)菌是一種耐藥性細(xì)菌,產(chǎn)生超級(jí)細(xì)菌的主要原因是用于抵抗細(xì)菌侵蝕的藥物越來(lái)越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對(duì)相應(yīng)的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對(duì)它起不到什么作用,病人會(huì)因?yàn)楦腥径鹂膳碌难装Y,高燒,痙攣,昏迷甚至死亡.某藥物研究所為篩查某種超級(jí)細(xì)菌,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有n(
)份血液樣本,每個(gè)樣本取到的可能性相等,有以下兩種檢驗(yàn)方式:(1)逐份檢驗(yàn),則需要檢驗(yàn)n次;(2)混合檢驗(yàn),將其中k(
且
)份血液樣本分別取樣混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,則這份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了;如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這k份血液究竟哪幾份為陽(yáng)性,就要對(duì)這k份血液再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為
次.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為p(
).現(xiàn)取其中k(
且
)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為
,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為
.
(1)運(yùn)用概率統(tǒng)計(jì)的知識(shí),若
,試求P關(guān)于k的函數(shù)關(guān)系式
;
(2)若P與抗生素計(jì)量
相關(guān),其中
,
,…,
(
)是不同的正實(shí)數(shù),滿足
,對(duì)任意的
(
),都有
.
(i)證明:
為等比數(shù)列;
(ii)當(dāng)
時(shí),采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求k的最大值.
參考數(shù)據(jù):
,
,
,
,
,
,
,
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.(
為自然對(duì)數(shù)的底數(shù))
(1)當(dāng)
時(shí),設(shè)
,求函數(shù)
在
上的最值;
(2)當(dāng)
時(shí),證明:
,其中
(
表示
中較小的數(shù).)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓
的左右焦點(diǎn)分別為的
、
,離心率為
;過(guò)拋物線
焦點(diǎn)
的直線交拋物線于
、
兩點(diǎn),當(dāng)
時(shí),
點(diǎn)在
軸上的射影為
。連結(jié)
并延長(zhǎng)分別交
于
、
兩點(diǎn),連接
;
與
的面積分別記為
,
,設(shè)
.
(Ⅰ)求橢圓
和拋物線
的方程;
(Ⅱ)求
的取值范圍.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
,
).
(1)當(dāng)
時(shí),若函數(shù)
在
上有兩個(gè)零點(diǎn),求
的取值范圍;
(2)當(dāng)
時(shí),是否存在
,使得不等式
恒成立?若存在,求出
的取值集合;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com